Calculating Uncertainties (AQA A Level Physics)

Revision Note

Katie M

Written by: Katie M

Reviewed by: Caroline Carroll

Uncertainty

  • There is always a degree of uncertainty when measurements are taken; the uncertainty can be thought of as the difference between the actual reading taken (caused by the equipment or techniques used) and the true value

  • Uncertainties are not the same as errors

    • Errors can be thought of as issues with equipment or methodology that cause a reading to be different from the true value

    • The uncertainty is a range of values around a measurement within which the true value is expected to lie, and is an estimate

  • For example, if the true value of the mass of a box is 950 g, but a systematic error with a balance gives an actual reading of 952 g, the uncertainty is ±2 g

  • These uncertainties can be represented in a number of ways:

    • Absolute Uncertainty: where uncertainty is given as a fixed quantity

    • Fractional Uncertainty: where uncertainty is given as a fraction of the measurement

    • Percentage Uncertainty: where uncertainty is given as a percentage of the measurement

  • To find uncertainties in different situations:

  • The uncertainty in a reading: ± half the smallest division

  • The uncertainty in a measurement: at least ±1 smallest division

  • The uncertainty in repeated data: half the range i.e. ± ½ (largest - smallest value)

  • The uncertainty in digital readings: ± the last significant digit unless otherwise quoted

Calculating Uncertainties, downloadable AS & A Level Physics revision notes

How to calculate absolute, fractional and percentage uncertainty

 

  • Always make sure your absolute or percentage uncertainty is to the same number of significant figures as the reading

Combining Uncertainties

  • When combining uncertainties, the rules are as follows:

Adding / Subtracting Data

  • Add together the absolute uncertainties

Combining Uncertainties (1), downloadable AS & A Level Physics revision notes

Multiplying / Dividing Data

  • Add the percentage or fractional uncertainties

Combining Uncertainties (2), downloadable AS & A Level Physics revision notes

Raising to a Power

  • Multiply the percentage uncertainty by the power

Combining Uncertainties (3), downloadable AS & A Level Physics revision notes

Worked Example

A student achieves the following results in their experiment for the angular frequency, ω.

0.154, 0.153, 0.159, 0.147, 0.152

Calculate the percentage uncertainty in the mean value of ω.

Answer:

Step 1: Calculate the mean value 

mean ω = fraction numerator 0.154 thin space plus thin space 0.153 space plus thin space 0.159 thin space plus thin space 0.147 space plus thin space 0.152 over denominator 5 end fraction0.153 rad s–1

Step 2: Calculate half the range (this is the uncertainty for multiple readings)

1 half× (0.159 – 0.147) = 0.006 rad s–1

Step 3: Calculate percentage uncertainty

fraction numerator u n c e r t a i n t y over denominator m e a s u r e d space v a l u e end fraction × 100 % = fraction numerator plus-or-minus h a l f space t h e space r a n g e over denominator m e a n end fraction × 100 %

fraction numerator 0.006 over denominator 0.153 end fraction× 100 % = 3.92 %

Examiner Tips and Tricks

Remember:

  • Absolute uncertainties (denoted by Δ) have the same units as the quantity

  • Percentage uncertainties have no units

  • The uncertainty in numbers and constants, such as π, is taken to be zero

Uncertainties in trigonometric and logarithmic functions will not be tested in the exam, so just remember these rules and you’ll be fine!

Last updated:

You've read 0 of your 5 free revision notes this week

Sign up now. It’s free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Katie M

Author: Katie M

Expertise: Physics

Katie has always been passionate about the sciences, and completed a degree in Astrophysics at Sheffield University. She decided that she wanted to inspire other young people, so moved to Bristol to complete a PGCE in Secondary Science. She particularly loves creating fun and absorbing materials to help students achieve their exam potential.

Caroline Carroll

Author: Caroline Carroll

Expertise: Physics Subject Lead

Caroline graduated from the University of Nottingham with a degree in Chemistry and Molecular Physics. She spent several years working as an Industrial Chemist in the automotive industry before retraining to teach. Caroline has over 12 years of experience teaching GCSE and A-level chemistry and physics. She is passionate about creating high-quality resources to help students achieve their full potential.