Pizza Prince is a fast-food restaurant which is known for their Crown pizza. The weights of Crown pizza are normally distributed with standard deviation 42 g. It is thought that the mean weight,
, is 350 g.
A restaurant inspector believes that the mean weight of the Crown pizza is less than
350 g. She visits the restaurant over the period of a week, and samples and weighs five randomly selected Crown pizzas. She uses the data to carry out a hypothesis test at the 5% level of significance.
She tests
against format('truetype')%3Bfont-weight%3Anormal%3Bfont-style%3Anormal%3B%7D%40font-face%7Bfont-family%3A'stixbf4d73f316737b26f1e860da0ea'%3Bsrc%3Aurl(data%3Afont%2Ftruetype%3Bcharset%3Dutf-8%3Bbase64%2CAAEAAAANAIAAAwBQT1MvMi8nBU0AAADcAAAATmNtYXDCjdaBAAABLAAAADRjdnQgSG4BcAAAAWAAAADYZnBnbUUgjnwAAAI4AAANbWdseWYcKO%2BSAAAPqAAAAGxoZWFkDLPdGwAAEBQAAAA2aGhlYQjYEyQAABBMAAAAJGhtdHg0LeORAAAQcAAAAAhsb2NhTQ9wLwAAEHgAAAAMbWF4cBlhFX0AABCEAAAAIG5hbWV4T00CAAAQpAAAAZ5wb3N0AgIA%2FwAAEkQAAAAgcHJlcFWzoI8AABJkAAAAvAAAApwBkAAFAAAD6APoAAAAAAPoA%2BgAAAAAAAEA%2BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgICAgAAAAINf%2FAqX%2BvQAAA%2F8B5gAAAAAAAgABAAEAAAAUAAMAAQAAABQABAAgAAAABAAEAAEAACI2%2F%2F8AACI2%2F%2F%2FdywABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFoAWgAcABwClgAAAcIAAP8nA%2F%2F%2BGgKk%2F%2FIBzP%2F2%2FyYD%2F%2F4aAFkAWQAgACAClgAAAqsBwv%2F2%2FycD%2F%2F4aAqT%2F8gKrAcz%2F9v8mA%2F%2F%2BGgBaAFoAHAAcApYAAAKrAcIAAP8nA%2F%2F%2BGgKk%2F%2FICqwHM%2F%2Fb%2FJgP%2F%2FhoAWgBaABwAHAKWAQ4CqwI6AVD%2F7AP%2F%2FhoCpP%2FyAqsCOv%2F2%2F%2BwD%2F%2F4aABgAGAAYABgD%2F%2F4aA%2F%2F%2BGrAALCCwAFVYRVkgIEu4AA5RS7AGU1pYsDQbsChZYGYgilVYsAIlYbkIAAgAY2MjYhshIbAAWbAAQyNEsgABAENgQi2wASywIGBmLbACLCBkILDAULAEJlqyKAELQ0VjRbAGRVghsAMlWVJbWCEjIRuKWCCwUFBYIbBAWRsgsDhQWCGwOFlZILEBC0NFY0VhZLAoUFghsQELQ0VjRSCwMFBYIbAwWRsgsMBQWCBmIIqKYSCwClBYYBsgsCBQWCGwCmAbILA2UFghsDZgG2BZWVkbsAIlsApDY7AAUliwAEuwClBYIbAKQxtLsB5QWCGwHkthuBAAY7AKQ2O4BQBiWVlkYVmwAStZWSOwAFBYZVlZLbADLCBFILAEJWFkILAFQ1BYsAUjQrAGI0IbISFZsAFgLbAELCMhIyEgZLEFYkIgsAYjQrAGRVgbsQELQ0VjsQELQ7AFYEVjsAMqISCwBkMgiiCKsAErsTAFJbAEJlFYYFAbYVJZWCNZIVkgsEBTWLABKxshsEBZI7AAUFhlWS2wBSywB0MrsgACAENgQi2wBiywByNCIyCwACNCYbACYmawAWOwAWCwBSotsAcsICBFILAMQ2O4BABiILAAUFiwQGBZZrABY2BEsAFgLbAILLIHDABDRUIqIbIAAQBDYEItsAkssABDI0SyAAEAQ2BCLbAKLCAgRSCwASsjsABDsAQlYCBFiiNhIGQgsCBQWCGwABuwMFBYsCAbsEBZWSOwAFBYZVmwAyUjYUREsAFgLbALLCAgRSCwASsjsABDsAQlYCBFiiNhIGSwJFBYsAAbsEBZI7AAUFhlWbADJSNhRESwAWAtsAwsILAAI0KyCwoDRVghGyMhWSohLbANLLECAkWwZGFELbAOLLABYCAgsA1DSrAAUFggsA0jQlmwDkNKsABSWCCwDiNCWS2wDywgsBBiZrABYyC4BABjiiNhsA9DYCCKYCCwDyNCIy2wECxLVFixBGREWSSwDWUjeC2wESxLUVhLU1ixBGREWRshWSSwE2UjeC2wEiyxABBDVVixEBBDsAFhQrAPK1mwAEOwAiVCsQ0CJUKxDgIlQrABFiMgsAMlUFixAQBDYLAEJUKKiiCKI2GwDiohI7ABYSCKI2GwDiohG7EBAENgsAIlQrACJWGwDiohWbANQ0ewDkNHYLACYiCwAFBYsEBgWWawAWMgsAxDY7gEAGIgsABQWLBAYFlmsAFjYLEAABMjRLABQ7AAPrIBAQFDYEItsBMsALEAAkVUWLAQI0IgRbAMI0KwCyOwBWBCIGCwAWG1EhIBAA8AQkKKYLESBiuwiSsbIlktsBQssQATKy2wFSyxARMrLbAWLLECEystsBcssQMTKy2wGCyxBBMrLbAZLLEFEystsBossQYTKy2wGyyxBxMrLbAcLLEIEystsB0ssQkTKy2wKSwjILAQYmawAWOwBmBLVFgjIC6wAV0bISFZLbAqLCMgsBBiZrABY7AWYEtUWCMgLrABcRshIVktsCssIyCwEGJmsAFjsCZgS1RYIyAusAFyGyEhWS2wHiwAsA0rsQACRVRYsBAjQiBFsAwjQrALI7AFYEIgYLABYbUSEgEADwBCQopgsRIGK7CJKxsiWS2wHyyxAB4rLbAgLLEBHistsCEssQIeKy2wIiyxAx4rLbAjLLEEHistsCQssQUeKy2wJSyxBh4rLbAmLLEHHistsCcssQgeKy2wKCyxCR4rLbAsLCA8sAFgLbAtLCBgsBJgIEMjsAFgQ7ACJWGwAWCwLCohLbAuLLAtK7AtKi2wLywgIEcgILAMQ2O4BABiILAAUFiwQGBZZrABY2AjYTgjIIpVWCBHICCwDENjuAQAYiCwAFBYsEBgWWawAWNgI2E4GyFZLbAwLACxAAJFVFixDAtFQrABFrAvKrEFARVFWDBZGyJZLbAxLACwDSuxAAJFVFixDAtFQrABFrAvKrEFARVFWDBZGyJZLbAyLCA1sAFgLbAzLACxDAtFQrABRWO4BABiILAAUFiwQGBZZrABY7ABK7AMQ2O4BABiILAAUFiwQGBZZrABY7ABK7AAFrQAAAAAAEQ%2BIzixMgEVKiEtsDQsIDwgRyCwDENjuAQAYiCwAFBYsEBgWWawAWNgsABDYTgtsDUsLhc8LbA2LCA8IEcgsAxDY7gEAGIgsABQWLBAYFlmsAFjYLAAQ2GwAUNjOC2wNyyxAgAWJSAuIEewACNCsAIlSYqKRyNHI2EgWGIbIVmwASNCsjYBARUUKi2wOCywABawESNCsAQlsAQlRyNHI2GxCgBCsAlDK2WKLiMgIDyKOC2wOSywABawESNCsAQlsAQlIC5HI0cjYSCwBCNCsQoAQrAJQysgsGBQWCCwQFFYswIgAyAbswImAxpZQkIjILAIQyCKI0cjRyNhI0ZgsARDsAJiILAAUFiwQGBZZrABY2AgsAErIIqKYSCwAkNgZCOwA0NhZFBYsAJDYRuwA0NgWbADJbACYiCwAFBYsEBgWWawAWNhIyAgsAQmI0ZhOBsjsAhDRrACJbAIQ0cjRyNhYCCwBEOwAmIgsABQWLBAYFlmsAFjYCMgsAErI7AEQ2CwASuwBSVhsAUlsAJiILAAUFiwQGBZZrABY7AEJmEgsAQlYGQjsAMlYGRQWCEbIyFZIyAgsAQmI0ZhOFktsDossAAWsBEjQiAgILAFJiAuRyNHI2EjPDgtsDsssAAWsBEjQiCwCCNCICAgRiNHsAErI2E4LbA8LLAAFrARI0KwAyWwAiVHI0cjYbAAVFguIDwjIRuwAiWwAiVHI0cjYSCwBSWwBCVHI0cjYbAGJbAFJUmwAiVhuQgACABjYyMgWGIbIVljuAQAYiCwAFBYsEBgWWawAWNgIy4jICA8ijgjIVktsD0ssAAWsBEjQiCwCEMgLkcjRyNhIGCwIGBmsAJiILAAUFiwQGBZZrABYyMgIDyKOC2wPiwjIC5GsAIlRrARQ1hQG1JZWCA8WS6xLgEUKy2wPywjIC5GsAIlRrARQ1hSG1BZWCA8WS6xLgEUKy2wQCwjIC5GsAIlRrARQ1hQG1JZWCA8WSMgLkawAiVGsBFDWFIbUFlYIDxZLrEuARQrLbBBLLA4KyMgLkawAiVGsBFDWFAbUllYIDxZLrEuARQrLbBCLLA5K4ogIDywBCNCijgjIC5GsAIlRrARQ1hQG1JZWCA8WS6xLgEUK7AEQy6wListsEMssAAWsAQlsAQmICAgRiNHYbAKI0IuRyNHI2GwCUMrIyA8IC4jOLEuARQrLbBELLEIBCVCsAAWsAQlsAQlIC5HI0cjYSCwBCNCsQoAQrAJQysgsGBQWCCwQFFYswIgAyAbswImAxpZQkIjIEewBEOwAmIgsABQWLBAYFlmsAFjYCCwASsgiophILACQ2BkI7ADQ2FkUFiwAkNhG7ADQ2BZsAMlsAJiILAAUFiwQGBZZrABY2GwAiVGYTgjIDwjOBshICBGI0ewASsjYTghWbEuARQrLbBFLLEAOCsusS4BFCstsEYssQA5KyEjICA8sAQjQiM4sS4BFCuwBEMusC4rLbBHLLAAFSBHsAAjQrIAAQEVFBMusDQqLbBILLAAFSBHsAAjQrIAAQEVFBMusDQqLbBJLLEAARQTsDUqLbBKLLA3Ki2wSyywABZFIyAuIEaKI2E4sS4BFCstsEwssAgjQrBLKy2wTSyyAABEKy2wTiyyAAFEKy2wTyyyAQBEKy2wUCyyAQFEKy2wUSyyAABFKy2wUiyyAAFFKy2wUyyyAQBFKy2wVCyyAQFFKy2wVSyzAAAAQSstsFYsswABAEErLbBXLLMBAABBKy2wWCyzAQEAQSstsFksswAAAUErLbBaLLMAAQFBKy2wWyyzAQABQSstsFwsswEBAUErLbBdLLIAAEMrLbBeLLIAAUMrLbBfLLIBAEMrLbBgLLIBAUMrLbBhLLIAAEYrLbBiLLIAAUYrLbBjLLIBAEYrLbBkLLIBAUYrLbBlLLMAAABCKy2wZiyzAAEAQistsGcsswEAAEIrLbBoLLMBAQBCKy2waSyzAAABQistsGosswABAUIrLbBrLLMBAAFCKy2wbCyzAQEBQistsG0ssQA6Ky6xLgEUKy2wbiyxADorsD4rLbBvLLEAOiuwPystsHAssAAWsQA6K7BAKy2wcSyxATorsD4rLbByLLEBOiuwPystsHMssAAWsQE6K7BAKy2wdCyxADsrLrEuARQrLbB1LLEAOyuwPistsHYssQA7K7A%2FKy2wdyyxADsrsEArLbB4LLEBOyuwPistsHkssQE7K7A%2FKy2weiyxATsrsEArLbB7LLEAPCsusS4BFCstsHwssQA8K7A%2BKy2wfSyxADwrsD8rLbB%2BLLEAPCuwQCstsH8ssQE8K7A%2BKy2wgCyxATwrsD8rLbCBLLEBPCuwQCstsIIssQA9Ky6xLgEUKy2wgyyxAD0rsD4rLbCELLEAPSuwPystsIUssQA9K7BAKy2whiyxAT0rsD4rLbCHLLEBPSuwPystsIgssQE9K7BAKy2wiSyzCQQCA0VYIRsjIVlCK7AIZbADJFB4sQUBFUVYMFktAAAAAAIAwP%2FzAT8CCQAKABYAIkAfAAEAAAMBAGcAAwICA1cAAwMCXwACAwJPJCQUIgQLGCsBFAYjIiY1NDYyFhEUBiMiJjU0NjMyFgE%2FIxwdIycyJiYaGSYlGhslAcoaJiMdGyQk%2Fk4aJicZHSIhAAEAAAABAAAzmKlrXw889QADA%2Bj%2F%2F%2F%2F%2F1GNNDf%2F%2F%2F%2F%2FUY00N%2FDb%2BGgigA%2F8AAAAKAAIAAQAAAAAAAQAAA%2F%2F%2BGgAACPj8Nv3JCKAAAQAAAAAAAAAAAAAAAAAAAAIA%2BgAAAf8AwAAAAAAAAAAAAAAAbAABAAAAAgcMAS0AAAAAAAIDiAOaAIsAAAXYCtUAAAAAAAAAFQECAAAAAAAAAAEAIAAAAAAAAAAAAAIADgAgAAAAAAAAAAMAIgAuAAAAAAAAAAQAIABQAAAAAAAAAAUAHABwAAAAAAAAAAYAEACMAAAAAAAAAAgAAACcAAEAAAAAAAEAIAAAAAEAAAAAAAIADgAgAAEAAAAAAAMAIgAuAAEAAAAAAAQAIABQAAEAAAAAAAUAHABwAAEAAAAAAAYAEACMAAEAAAAAAAgAAACcAAMAAQQJAAEAIAAAAAMAAQQJAAIADgAgAAMAAQQJAAMAIgAuAAMAAQQJAAQAIABQAAMAAQQJAAUAHABwAAMAAQQJAAYAEACMAAMAAQQJAAgAAACcAFMAVABJAFgALQBSAGUAZwB1AGwAYQByAC0AVABUAEYAUgBlAGcAdQBsAGEAcgAgAFMAVABJAFgALQBSAGUAZwB1AGwAYQByAC0AVABUAEYAUwBUAEkAWAAtAFIAZQBnAHUAbABhAHIALQBUAFQARgBWAGUAcgBzAGkAbwBuACAAMQAuADEALgAxACBTVElYLVJlZ3VsYXItVFRGAAAAAwAAAAAAAAH%2FAP8AAAAAAAAAAAAAAAAAAAAAAAAAAABLuADIUlixAQGOWbABuQgACABjcLEAB0K2AF9LNyMFACqxAAdCQAxmAlIIPggqCBgHBQgqsQAHQkAMagBcBkgGNAYhBQUIKrEADEK%2BGcAUwA%2FACsAGQAAFAAkqsQARQr4AQABAAEAAQABAAAUACSqxAwBEsSQBiFFYsECIWLEDAESxJgGIUVi6CIAAAQRAiGNUWLEDAERZWVlZQAxoAlQIQAgsCBoHBQwquAH%2FhbAEjbECAESzBWQGAERE)format('truetype')%3Bfont-weight%3Anormal%3Bfont-style%3Anormal%3B%7D%3C%2Fstyle%3E%3C%2Fdefs%3E%3Ctext%20font-family%3D%22Times%20New%20Roman%22%20font-size%3D%2218%22%20text-anchor%3D%22middle%22%20x%3D%226.5%22%20y%3D%2218%22%3EH%3C%2Ftext%3E%3Ctext%20font-family%3D%22Times%20New%20Roman%22%20font-size%3D%2213%22%20text-anchor%3D%22middle%22%20x%3D%2216.5%22%20y%3D%2226%22%3E1%3C%2Ftext%3E%3Ctext%20font-family%3D%22stixbf4d73f316737b26f1e860da0ea%22%20font-size%3D%2218%22%20text-anchor%3D%22middle%22%20x%3D%2227.5%22%20y%3D%2218%22%3E%26%23x2236%3B%3C%2Ftext%3E%3Ctext%20font-family%3D%22Times%20New%20Roman%22%20font-size%3D%2218%22%20font-style%3D%22italic%22%20text-anchor%3D%22middle%22%20x%3D%2241.5%22%20y%3D%2218%22%3E%26%23x3BC%3B%3C%2Ftext%3E%3Ctext%20font-family%3D%22math17d6b65b75d0ffed58234ccd284%22%20font-size%3D%2216%22%20text-anchor%3D%22middle%22%20x%3D%2255.5%22%20y%3D%2218%22%3E%26lt%3B%3C%2Ftext%3E%3Ctext%20font-family%3D%22Times%20New%20Roman%22%20font-size%3D%2218%22%20text-anchor%3D%22middle%22%20x%3D%2276.5%22%20y%3D%2218%22%3E350%3C%2Ftext%3E%3Ctext%20font-family%3D%22math17d6b65b75d0ffed58234ccd284%22%20font-size%3D%2216%22%20text-anchor%3D%22middle%22%20x%3D%2292.5%22%20y%3D%2218%22%3E.%3C%2Ftext%3E%3C%2Fsvg%3E)
When the inspector writes up her report, she can only find the values for four of the weights, these are shown below:
325.2 356.1 319.7 300.5
Given that the result of the hypothesis test is that there is insufficient evidence to reject
at the 5% level of significance, calculate the minimum possible value for the missing weight,
. Give your answer correct to 1 decimal place.