Integrating with Trigonometric Identities (Edexcel A Level Maths): Revision Note
Did this video help you?
Integrating with Trigonometric Identities
What are trigonometric identities?

Some are given in the formulae booklet
Be sure to note the difference between the ± and ∓ symbols!
How do I know which trig identities to use?
There is no set method
This is a matter of experience, familiarity and recognition
Practice as many questions as possible
Be familiar with trigonometric functions that can be integrated easily
Be familiar with common identities – especially squared terms
sin2 x, cos2 x, tan2 x, cosec2 x, sec2 x, tan2 x all appear in identities

How do I integrate tan2, cot2, sec2 and cosec2?
The integral of sec2x is tan x (+c)
This is because the derivative of tan x is sec2x
The integral of cosec2x is -cot x (+c)
This is because the derivative of cot x is -cosec2x
The integral of tan2x can be found by using the identity to rewrite tan2x before integrating:
1 + tan2x = sec2x
The integral of cot2x can be found by using the identity to rewrite cot2x before integrating:
1 + cot2x = cosec2x
How do I integrate sin and cos?
For functions of the form sin kx, cos kx … see Integrating Other Functions
sin kx × cos kx can be integrated using the identity for sin 2A
sin 2A = 2sinAcosA

sinn kx cos kx or sin kx cosn kx can be integrated using reverse chain rule or substitution
Notice no identity is used here but it looks as though there should be!

sin2 kx and cos2 kx can be integrated by using the identity for cos 2A
For sin2 A, cos 2A = 1 - 2sin2 A
For cos2 A, cos 2A = 2cos2 A – 1

How do I integrate tan?

This is a standard result from the formulae booklet
How do I integrate other trig functions?
The formulae booklet lists many standard trigonometric derivatives and integrals
Check both the “Differentiation” and “Integration” sections
For integration using the "Differentiation" formulae, remember that the integral of f'(x) is f(x) !

Experience, familiarity and recognition are important – practice, practice, practice!
Problem-solving techniques

Examiner Tips and Tricks
Make sure you have a copy of the formulae booklet during revision.
Questions are likely to be split into (at least) two parts:
The first part may be to show or prove an identity
The second part may be the integration
If you cannot do the first part, use a given result to attempt the second part.
Worked Example


You've read 0 of your 5 free revision notes this week
Sign up now. It’s free!
Did this page help you?