Further Complex Numbers (CIE A Level Maths: Pure 3)

Exam Questions

2 hours22 questions
1a
Sme Calculator
1 mark

A complex number z may be written in modulus-argument form as

z equals r left parenthesis cos space theta plus i space sin space theta right parenthesis

where r equals vertical line z vertical line is the modulus of  z,  and theta equals arg space z is the argument of z.

According to Euler’s relation, the equation e to the power of i theta end exponent equals cos space theta plus straight i space sin space theta is true for any real number theta. Therefore it is also possible to write a complex number in exponential form as

z equals r e to the power of i theta end exponent

where again r equals vertical line z vertical line is the modulus of z,  and theta equals arg space z is the argument of z.

The modulus-argument form of a complex number is 6 left parenthesis cos space 2 plus i space sin space 2 space right parenthesis.  Write that complex number in exponential form.

1b
Sme Calculator
4 marks

3 plus 3 i is another complex number.

(i)
Calculate the modulus and argument of 3 plus 3 i, giving your answers as exact values. 
(ii)
Use your answers to part (i) to write 3 plus 3 i space spacein both modulus-argument form and exponential form.

Did this page help you?

2a
Sme Calculator
2 marks

z subscript 1 equals 8 e to the power of negative i end exponent

z subscript 2 equals 2 e to the power of 2 i end exponent

Using normal rules of algebra and the laws of indices, work out z subscript 1 z subscript 2 and z subscript 1 over z subscript 2 giving your answers in exponential form.  Note that    may in all cases be treated just like any other algebraic constant.

2b
Sme Calculator
2 marks

Express your answers to part (a) as complex numbers in modulus-argument form.

Did this page help you?

3a
Sme Calculator
2 marks

By first calculating the modulus and argument of each number, write the numbers 3  and negative i as complex numbers in exponential form.

3b
Sme Calculator
2 marks

Let z equals r e to the power of i theta end exponent, where r equals vertical line z vertical line and  theta equals arg space z,  be a general complex number.  Using your answer from part (a), work out each of the following giving your answers in exponential form in terms of r and  theta:

(i)
3 z
(ii)
negative i z
3c
Sme Calculator
4 marks

Let z be represented as a point on an Argand diagram, where you may now assume that vertical line z vertical line not equal to 0.  By considering the modulus and argument of each of your answers in part (b), describe the geometrical transformations that will map z to each of the following points on the Argand diagram:

(i)
3 z
(ii)
negative i z 

Did this page help you?

4a
Sme Calculator
2 marks

For a complex number z,  a square root of z is a complex number w which satisfies the following equation:

w squared equals z

Given that z equals 9 left parenthesis cos space fraction numerator 2 pi over denominator 3 end fraction plus i space sin space fraction numerator 2 pi over denominator 3 end fraction right parenthesis,  use the laws of multiplying complex numbers in modulus-argument form to show that  3 open parentheses cos space pi over 3 plus i space sin space pi over 3 close parentheses  is a square root of  z.

4b
Sme Calculator
3 marks

By the same method, and using the trigonometric identities  cos space left parenthesis theta plus 2 pi right parenthesis identical to cos space theta and  sin space left parenthesis theta plus 2 pi right parenthesis identical to sin space theta,  show that  3 open parentheses cos space open parentheses negative fraction numerator 2 pi over denominator 3 end fraction close parentheses plus i space sin space open parentheses negative fraction numerator 2 pi over denominator 3 end fraction close parentheses close parentheses  is another square root of  z.

4c
Sme Calculator
3 marks

Given that

negative 1 equals 1 left parenthesis cos left parenthesis negative pi right parenthesis plus i space sin left parenthesis negative pi right parenthesis right parenthesis

use the laws of multiplying complex numbers in modulus-argument form to show that

3 open parentheses cos open parentheses negative fraction numerator 2 pi over denominator 3 end fraction close parentheses plus i space sin open parentheses negative fraction numerator 2 pi over denominator 3 end fraction close parentheses close parentheses equals negative 3 open parentheses cos pi over 3 plus i space sin pi over 3 close parentheses

Compare this to the relationship between the two square roots of a positive real number.

Did this page help you?

5a
Sme Calculator
1 mark

z equals negative 3 plus 3 i comma space space space space space Re left parenthesis z w right parenthesis equals 0 comma space space space space space vertical line z w vertical line equals 5 vertical line z vertical line

Recall that for two complex numbers z subscript 1 and z subscript 2

vertical line z subscript 1 z subscript 2 vertical line equals vertical line z subscript 1 vertical line vertical line z subscript 2 vertical line

Use this relationship and the information above to find vertical line w vertical line.

5b
Sme Calculator
2 marks

Show that arg space z equals fraction numerator 3 pi over denominator 4 end fraction,  and write down the two possible values of  arg space left parenthesis z w right parenthesis.

5c
Sme Calculator
2 marks

Recall that for two complex numbers z subscript 1 and  z subscript 2

arg left parenthesis z subscript 1 z subscript 2 right parenthesis equals arg space z subscript 1 plus arg space z subscript 2

Use this relationship and your answers to part (b) to find the two possible values of  arg space w.  Give your answers in the interval  negative pi less than a rg space w less or equal than pi,  using where necessary the fact that adding or subtracting  2 pi  from the argument of a complex number does not change the complex number.

5d
Sme Calculator
1 mark

Use your answers from parts (a) and (c) above to write down the two possibilities for w, giving your answers in exponential form.

5e
Sme Calculator
3 marks

For each of the possible values of w, describe the geometrical transformation that would map z to z w in an Argand diagram.

Did this page help you?

1
Sme Calculator
4 marks

z subscript 1 equals 6 e to the power of i

z subscript 2 equals 3 e to the power of negative 2 i end exponent

(i)
Work out z subscript 1 z subscript 2 and   z subscript 1 over z subscript 2,  giving your answers in exponential form.
(ii)
Express your answers to part (i) as complex numbers in modulus-argument form.

Did this page help you?

2
Sme Calculator
3 marks

Express the following complex numbers in exponential form:

(i)
7 left parenthesis cos space 3 plus i space sin space 3 right parenthesis
(ii)
2 minus 2 i

Did this page help you?

3
Sme Calculator
6 marks

Given the point z on an Argand diagram, where z not equal to 0 is a complex number, describe the geometrical transformations that will map z to each of the following points:

(i)
4 z
(ii)
i z
(iii)
w z (where w is a non-zero complex number)

Did this page help you?

4a
Sme Calculator
3 marks

Let z equals r left parenthesis cos space theta plus i space sin space theta right parenthesis be a square root of the complex number 1 minus square root of 3 i.

By first expressing 1 minus square root of 3 space i in modulus-argument form, show that

r squared left parenthesis cos space 2 theta plus straight i space sin space 2 theta right parenthesis equals 2 open parentheses cos open parentheses negative pi over 3 close parentheses plus straight i space sin space open parentheses negative pi over 3 close parentheses close parentheses

4b
Sme Calculator
2 marks

Use the geometry of complex numbers to explain why

2 open parentheses cos open parentheses negative pi over 3 close parentheses plus i space sin open parentheses negative pi over 3 close parentheses close parentheses equals 2 open parentheses cos open parentheses negative pi over 3 plus 2 pi close parentheses plus i space sin space open parentheses negative pi over 3 plus 2 pi close parentheses close parentheses

4c
Sme Calculator
4 marks

Use your answers to parts (a) and (b) to find the two square roots of the complex number  1 minus square root of 3 i,  giving your answers in modulus-argument form.

Express the square roots in the form  a plus b i  where a and b are real numbers.

Did this page help you?

5
Sme Calculator
4 marks

z equals 5 minus 5 i comma space space space space R e left parenthesis z w right parenthesis equals 0 comma space space space space vertical line z w vertical line equals 4 vertical line z vertical line

By considering the position of z in an Argand diagram and using geometrical reasoning, find the two possibilities for w in exponential form.

Did this page help you?

1
Sme Calculator
4 marks

Express the following complex numbers in exponential form:

(i)
3 left parenthesis 2 space cos space 2 minus 2 i space sin space left parenthesis negative 2 right parenthesis space right parenthesis
(ii)
negative 2 plus 2 square root of 3 i

Did this page help you?

2
Sme Calculator
4 marks

z subscript 1 equals 6 e to the power of 4 i end exponent

z subscript 2 equals 8 e to the power of negative i end exponent

(i)
Work out z subscript 1 z subscript 2 and z subscript 1 over z subscript 2, giving your answers in exponential form.
(ii)
Express your answers to part (i) as complex numbers in modulus-argument form.
In each case the modulus and argument should be given as exact values, with the argument theta being given in the interval negative pi less than theta less or equal than pi.

Did this page help you?

3
Sme Calculator
6 marks

Given the point z on an Argand diagram, where z not equal to 0 is a complex number, describe the geometrical transformations that will map z to each of the following points:

(i)
negative 2 z
(ii)
vertical line z vertical line
(iii)
z over w (where w is a non-zero complex number)

Did this page help you?

4a
Sme Calculator
3 marks

Let z equals r left parenthesis cos space theta plus i space sin space theta right parenthesis be a square root of the complex number negative 5 square root of 3 minus 5 i.

Show that

r squared left parenthesis cos space 2 theta plus straight i space sin space 2 theta right parenthesis equals 10 open parentheses cos open parentheses fraction numerator negative 5 pi over denominator 6 end fraction close parentheses plus straight i space sin open parentheses fraction numerator negative 5 straight pi over denominator 6 end fraction close parentheses close parentheses

4b
Sme Calculator
2 marks

Use the geometry of complex numbers to explain why

cos space alpha plus i space sin space alpha equals cos space left parenthesis alpha plus 2 pi right parenthesis plus i space sin space left parenthesis alpha plus 2 pi right parenthesis

for any value of alpha, where alpha is a real number.

4c
Sme Calculator
4 marks

Use your answers to parts (a) and (b) to find the two square roots of the complex number negative 5 square root of 3 minus 5 i. Give your answers both in modulus-argument form and in the form a plus b i where a and b are real numbers.

Did this page help you?

5
Sme Calculator
4 marks

z equals 3 plus 3 square root of 3 i comma space space space space space space space space space R e left parenthesis z squared w right parenthesis equals 0 comma space space space space space space space space vertical line z squared w vertical line equals 2 vertical line z vertical line

Use geometrical reasoning to find the two possibilities for w, giving your answers in exponential form.

Did this page help you?

6
Sme Calculator
3 marks

By considering the exponential and modulus-argument forms of a complex number, prove Euler’s identity

e to the power of i pi end exponent plus 1 equals 0

Did this page help you?

1
Sme Calculator
4 marks

Express the following complex numbers in exponential form:

(i)
negative 5 left parenthesis cos space 2 minus i space sin space 2 right parenthesis
(ii)
open parentheses square root of 2 minus square root of 6 close parentheses minus open parentheses square root of 2 plus square root of 6 i close parentheses

Did this page help you?

2
Sme Calculator
4 marks

z subscript 1 equals 14 e to the power of 9 i end exponent

z subscript 2 equals 10 e to the power of negative 2 i end exponent

(i)
Work out z subscript 1 z subscript 2 and  z subscript 2 over z subscript 1,  giving your answers in exponential form.
(ii)
Express your answers to part (i) as complex numbers in modulus-argument form.
In each case the modulus and argument should be given as exact values, with the argument theta being given in the interval  negative pi less than theta less or equal than pi.

Did this page help you?

3a
Sme Calculator
3 marks

Given the points 1 and z on an Argand diagram, where z not equal to 0 is a complex number, explain how to find each of the following points by geometrical construction.  In each case provide a sketch to illustrate your answer.

z squared

3b
Sme Calculator
3 marks

left parenthesis 2 minus i right parenthesis z

Did this page help you?

4a
Sme Calculator
2 marks

Let z equals r e to the power of i theta end exponent be a general complex number, where r comma space theta space element of space straight real numbers and r greater or equal than 0.

Use the geometry of complex numbers to explain why

r e to the power of i theta end exponent equals r e to the power of i left parenthesis theta plus 2 pi right parenthesis end exponent

for any value of theta.

4b
Sme Calculator
3 marks

Hence use the properties of complex numbers to determine the two distinct square roots of z, giving your answers in exponential form in terms of r and theta.

Did this page help you?

5
Sme Calculator
4 marks

z equals square root of 3 minus i comma space space space space space space space space space space space space Im open parentheses straight z squared over straight w close parentheses equals 0 comma space space space space space space space space space space space space space space space space open vertical bar z squared over w close vertical bar equals 1 half vertical line z vertical line

Use geometrical reasoning to find the two possibilities for w, giving your answers in exponential form.

Did this page help you?

6a
Sme Calculator
2 marks

Note: You may assume throughout this question that i equals square root of negative 1 end root behaves exactly the same as any other constant for purposes of algebraic manipulation, differentiation and integration.

For a complex number z equals cos space theta plus i space sin space theta,  where  theta element of straight real numbers,  show that

fraction numerator d z over denominator d theta end fraction equals i z

6b
Sme Calculator
4 marks

Utilising your knowledge of differential equations, explain briefly why the result of part (a) supports the validity of Euler’s relation

e to the power of i theta end exponent equals cos space theta plus straight i space sin space theta

Did this page help you?