Loci in Argand Diagrams (CIE A Level Maths: Pure 3)

Revision Note

Mark

Author

Mark

Last updated

Did this video help you?

Loci in Argand Diagrams

How do I sketch the locus of bold Re blank bold italic z equals bold italic k or bold Im blank bold italic z equals bold italic k on an Argand diagram?

  • All complex numbers, z equals x plus straight i y, that satisfy the equation Re space z equals k lie on a vertical line with Cartesian equation x space equals space k
    • Any complex number along this vertical line will have a real part of k
  • All complex numbers, z equals x plus straight i y, that satisfy the equation Im blank z equals k lie on a horizontal line with Cartesian equation y space equals space k
    • Any complex number along this horizontal line will have an imaginary part of k
  • E.g. The loci Re space z equals 4 and Im blank z equals negative 3 are represented by the vertical line x space equals space 4 and the horizontal line y space equals space minus 3  

8-2-4_notes_fig1

Sketching the loci of  bold Re bold space bold italic z bold equals bold 4 and bold Im space bold italic z bold equals bold minus bold 3

How do I sketch the locus of open vertical bar bold italic z minus bold italic a close vertical bar equals bold italic k on an Argand diagram?

  • All complex numbers, z, that satisfy the equation open vertical bar z close vertical bar space equals space k lie on a circle of radius k about the origin
    • E.g. the locus of open vertical bar z close vertical bar space equals space 10 is a circle of radius 10, centred at the origin, as every complex number on that circle has a modulus of 10
  • For a given complex number, a, all complex numbers, z, that satisfy the equation open vertical bar z space minus space a close vertical bar space equals space k lie on a circle of radius k about the centre a
    • This is because open vertical bar z space minus space a close vertical bar represents the distance between complex numbers z and a 
    • E.g. the locus of open vertical bar z minus open parentheses 3 plus 4 straight i close parentheses close vertical bar equals 10 is a circle of radius 10 about left parenthesis 3 plus 4 straight i right parenthesis
  • Many equations need to be adjusted algebraically into the correct open vertical bar z space minus space a close vertical bar form
    • E.g. to find the centre of the circle open vertical bar z minus 8 straight i plus 3 close vertical bar equals 12, first rewrite it as open vertical bar z minus open parentheses negative 3 plus 8 straight i close parentheses close vertical bar equals 12, giving the centre as negative 3 plus 8 straight i
    • E.g. to find the centre of the circle open vertical bar z plus straight i close vertical bar equals 2, first rewrite it as open vertical bar z minus open parentheses negative straight i close parentheses close vertical bar equals 2 , giving the centre as open parentheses negative straight i close parentheses
    • Note that the centre of the circle open vertical bar z close vertical bar space equals space 5 is the origin (it can be thought of as open vertical bar z minus 0 close vertical bar equals 5)
  • In order to sketch correctly, check whether the origin lies outside, on or inside the circle
    • E.g. for the locus of open vertical bar z minus open parentheses 3 plus 4 straight i close parentheses close vertical bar equals 10 comma the distance from the centre of the circle, 3 plus 4 straight i, to the origin is 5 (by Pythagoras), which is less than the radius of 10; a sketch must therefore show the origin inside the circle
  • By knowing the radius and centre of a circle, the Cartesian equation of the circle can be found
    • The circle open vertical bar z minus open parentheses 3 plus 4 straight i close parentheses close vertical bar equals 10 has a radius of 10 and centre of left parenthesis 3 comma space 4 right parenthesis in coordinates, so the equation of the circle is open parentheses x minus 3 close parentheses squared plus open parentheses y minus 4 close parentheses squared equals 100

8-2-4_notes_fig2

Sketching the loci of  begin bold style stretchy vertical line z stretchy vertical line end style bold equals bold 10 and begin bold style stretchy vertical line z minus open parentheses 3 plus 4 i close parentheses stretchy vertical line end style bold equals bold 10

How do I sketch the locus of open vertical bar bold italic z minus bold italic a close vertical bar equals vertical line bold italic z minus bold italic b vertical line on an Argand diagram?

  • For two given complex numbers, a and b, all complex numbers, z, that satisfy the equation open vertical bar z minus a close vertical bar equals vertical line z minus b vertical line lie on the perpendicular bisector of a and b
    • This is because the distance from z to a must equal the distance from z to b
      • a condition that is satisfied by all the complex numbers, z, on the perpendicular bisector of a and b
    • E.g. the locus of open vertical bar z minus 3 plus 2 straight i close vertical bar equals vertical line z plus 8 vertical line can be rewritten as open vertical bar z minus open parentheses 3 minus 2 straight i close parentheses close vertical bar equals open vertical bar z minus open parentheses negative 8 close parentheses close vertical bar which is the perpendicular bisector of the points 3 minus 2 straight i and negative 8
  • A sketch of the perpendicular bisector is sufficient, without finding its exact equation (though this could be found using coordinate geometry methods)

8-2-4_notes_fig3

Sketching the loci of  stretchy vertical line bold italic z minus i stretchy vertical line equals open vertical bar bold italic z minus 3 i close vertical barand stretchy vertical line bold italic z minus open parentheses 3 minus 2 i close parentheses stretchy vertical line equals open vertical bar bold italic z minus open parentheses negative 8 close parentheses close vertical bar

How do I sketch the locus of bold arg bold space left parenthesis bold italic z minus bold italic a right parenthesis equals bold italic alpha  on an Argand diagram?

  • All complex numbers, z, that satisfy the equation arg space z equals alpha lie on a half-line from the origin at an angle of alpha to the positive real axis
    • Although the half-line starts at the origin, the origin itself (z space equals space 0) does not satisfy the equation arg space z equals alpha  as arg space 0 is undefined (there is no angle at the origin)
    • To show the exclusion of z space equals space 0 from the locus of arg space z equals alpha, a small open circle at the origin is used
    • E.g. the locus of arg space z equals straight pi over 4 is a half-line of angle straight pi over 4 to the positive real axis, starting from the origin, with an open circle at the origin
  • For a given complex number, a, all complex numbers, z, that satisfy the equation arg space left parenthesis z minus a right parenthesis equals alpha lie on a half-line from the point a at an angle of alpha to the positive real axis, with an open circle to show the exclusion of z space equals space a
    • E.g. the locus of arg space open parentheses z minus 1 minus 5 straight i close parentheses equals fraction numerator 2 pi over denominator 3 end fraction can be rewritten as arg space open parentheses z minus open parentheses 1 plus 5 straight i close parentheses close parentheses equals fraction numerator 2 pi over denominator 3 end fraction, which is a half-line of angle fraction numerator 2 pi over denominator 3 end fractionmeasured from the point 1 plus 5 straight i, with an open circle at 1 plus 5 straight i to show its exclusion
  • In some cases, the equation of the half-line can be found using a sketch to help
    • E.g. the locus of arg space z equals pi over 4is the half-line y space equals space x for x space greater than space 0  
    • E.g. the locus of arg space open parentheses z minus left parenthesis 8 plus 5 straight i close parentheses equals negative pi over 4 can be thought of, in coordinate geometry, as the half-line through left parenthesis 8 comma space 5 right parenthesiswith gradient -1, giving y space equals negative x plus 13  for  x space greater than space 8
    • Whilst not examinable, the half-line equation for a more general angle, arg space z equals alpha, is y equals open parentheses tan space alpha close parentheses x for x space greater than space 0, as the gradient equals opposite over adjacent equals tan space alpha

8-2-4_notes_fig4

Sketching the loci of  bold arg bold space bold italic z bold equals bold pi over bold 4and bold arg bold left parenthesis bold italic z bold minus stretchy left parenthesis 1 plus 5 i right parenthesis stretchy right parenthesis bold equals fraction numerator bold 2 bold pi over denominator bold 3 end fraction

Worked example

8-2-4_example_fig1-part-1

8-2-4_example_fig1-part-2

Examiner Tip

  • In the exam, do not worry about making your diagrams perfect.
  • A quick sketch with all the key features is sufficient.

You've read 0 of your 5 free revision notes this week

Sign up now. It’s free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Mark

Author: Mark

Expertise: Maths

Mark graduated twice from the University of Oxford: once in 2009 with a First in Mathematics, then again in 2013 with a PhD (DPhil) in Mathematics. He has had nine successful years as a secondary school teacher, specialising in A-Level Further Maths and running extension classes for Oxbridge Maths applicants. Alongside his teaching, he has written five internal textbooks, introduced new spiralling school curriculums and trained other Maths teachers through outreach programmes.