E(X) & Var(X) (Continuous) (CIE A Level Maths: Probability & Statistics 2)

Revision Note

Paul

Author

Paul

Last updated

E(X) & Var(X) (Continuous)

What are E(X) and Var(X)?

  • E(X)is the expected value, or mean, of a random variable X
    • E(X) is the same as the population mean so can also be denoted by µ
  • Var (X) is the variance of the continuous random variable X
    • Standard deviation is the square root of the variance

How do I find the mean and variance of a continuous random variable?

  • The mean, for a continuous random variable X is given by

bold E bold left parenthesis bold italic X bold right parenthesis bold equals bold integral subscript bold minus bold infinity end subscript superscript bold infinity bold italic x bold f bold left parenthesis bold italic x bold right parenthesis bold space bold d bold italic x

  • This is equivalent to straight capital sigma x straight P left parenthesis X equals x right parenthesis for discrete random variables
  • If the graph of y equals straight f left parenthesis x right parenthesishas axis of symmetry, x = a , then  E(X) = a
  • The variance is given by

bold Var bold left parenthesis bold italic X bold right parenthesis bold equals bold integral subscript bold minus bold infinity end subscript superscript bold infinity bold italic x to the power of bold 2 bold f bold left parenthesis bold italic x bold right parenthesis bold d bold italic x bold minus stretchy left square bracket E open parentheses X close parentheses stretchy right square bracket to the power of bold 2

  • This is equivalent to straight capital sigma x squared straight P left parenthesis X equals x right parenthesis minus stretchy left square bracket E open parentheses X close parentheses stretchy right square bracket squared  for discrete random variables
  • Be careful about confusing E left parenthesis X squared right parenthesis  and begin mathsize 16px style open square brackets E open parentheses X close parentheses close square brackets squared end style
    • E left parenthesis X squared right parenthesis equals integral subscript negative infinity end subscript superscript infinity x squared straight f left parenthesis x right parenthesis space straight d x                “mean of the squares”
    • open square brackets E left parenthesis X right parenthesis close square brackets squared equals open square brackets integral subscript negative infinity end subscript superscript infinity x space straight f left parenthesis x right parenthesis space straight d x close square brackets squared       “square of the mean”
    • If you are happy with the difference between these and how to calculate them the variance formula becomes very straightforward

Var left parenthesis X right parenthesis equals straight E left parenthesis X squared right parenthesis minus open square brackets straight E left parenthesis X right parenthesis close square brackets squared

How do I calculate E(g(X))?

  • straight E open parentheses g open parentheses X close parentheses close parentheses equals integral subscript negative infinity end subscript superscript infinity g open parentheses x close parentheses straight f left parenthesis x right parenthesis space straight d x
  • In particular:
    • straight E left parenthesis X squared right parenthesis equals integral subscript negative infinity end subscript superscript infinity x squared straight f left parenthesis x right parenthesis space straight d xas seen above

Worked example

A continuous random variable, X, is modelled by the probability distribution function straight f left parenthesis x right parenthesis, such that

straight f left parenthesis x right parenthesis equals open curly brackets table row cell 1.5 x squared left parenthesis 1 minus 0.5 x right parenthesis end cell cell 0 less or equal than x less or equal than 2 end cell row cell space space space space space space space space space space space space 0 end cell otherwise end table close 

(i)
Find E open parentheses X close parentheses

 

(ii)
Find Var open parentheses X close parentheses

(i)
Find E open parentheses X close parentheses

2-3-2-cie-fig1-we-solution_a

(ii)
Find Var open parentheses X close parentheses

2-3-2-cie-fig1-we-solution_b

Examiner Tip

  • A sketch of the graph of y =  f(x) can highlight any symmetrical properties which can help reduce the work involved in finding the mean and variance
  • Take care with awkward values and negatives – use the memory features on your calculator and avoid rounding until your final answer (if rounding at all!)

You've read 0 of your 5 free revision notes this week

Sign up now. It’s free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Paul

Author: Paul

Expertise: Maths

Paul has taught mathematics for 20 years and has been an examiner for Edexcel for over a decade. GCSE, A level, pure, mechanics, statistics, discrete – if it’s in a Maths exam, Paul will know about it. Paul is a passionate fan of clear and colourful notes with fascinating diagrams – one of the many reasons he is excited to be a member of the SME team.