The graph of is shown.
State the maximum value of on the graph.
Circle your answer.
Did this page help you?
The graph of is shown.
State the maximum value of on the graph.
Circle your answer.
Did this page help you?
Simplify fully
Circle your answer.
Did this page help you?
Given obtain
Circle your answer.
Did this page help you?
Find the first three terms, in ascending powers of , in the expansion of
Use your answer to part (a) to estimate .
Did this page help you?
A sector of a circle,, is such that it has radius cm and the angle at its centre, , is radians.
Find the length of the arc .
Did this page help you?
Given that is small, write an approximation in terms of for
sin cos tan2
Did this page help you?
A company manufactures food tins in the shape of cylinders which must have a constant volume of 150π cm3. To lessen material costs the company would like to minimise the surface area of the tins.
By first expressing the height h of the tin in terms of its radius r, show that the surface area of the cylinder is given by .
Use calculus to find the minimum value for the surface area of the tins. Give your answer correct to 2 decimal places.
Did this page help you?
The two parallel sides of a trapezium have lengths of cm and cm, and the area of the trapezium is cm2. Showing clear algebraic working, determine the perpendicular distance between the two parallel sides of the trapezium. Give your answer in the form where a and b are integers.
Did this page help you?
Frankie opens a savings account with £400.
Compound interest is paid at an annual rate of 3%.
Show that at the end of the first year Frankie has £412 in the savings account.
At the start of the second year, and each subsequent year, Frankie adds another £400 to the savings account.
Write down the amount of interest the £400 invested at the start of year 2 will earn by the start of year 3.
Explain why the amount of money in the savings account, in pounds, at the end of year 2 can be written as
Hence show that after years, the amount in pounds in Frankie’s savings account will be
Show that the sum of the geometric series is given by
Hence find the amount of money in Frankie’s savings account at the end of 12 years.
Did this page help you?
Use integration by parts to find, in terms of e, the exact value of
Did this page help you?
A curve has the equation
The point P is the stationary point of the curve.
Find the coordinates of P and determine its nature.
Did this page help you?
Given show that .
Solve the inequality and hence determine the set of values for which the graph of is concave.
Did this page help you?
Aurora has collected data from 40 similar-sized beaches to investigate any correlation between the slope of the beach and the frequency of waves.
She calculates the correlation coefficient.
Which of the following statements best describes her answer of ?
Tick () one box.
Definitely incorrect | |
Probably incorrect | |
Probably correct | |
Definitely correct |
Did this page help you?
The random variable is such that .
The mean value of is 48.
The variance of is 36.
Find .
Circle your answer.
0.875 | 0.125 | 0.75 | 0.25 |
Did this page help you?
The large data set contains data on 407 Ford cars from 2002. A selection of data relating to the CO2 and CO emissions (g/km) of Ford cars from 2002 is given above.
The large data set includes data on a variety of variables including propulsion and body type. Roughly three quarters of the Ford cars in the data set are petrol cars.
Did this page help you?
As part of an experiment, 15 maths teachers are asked to solve a riddle and their times, in minutes, are recorded:
8 12 19 20 20
21 22 23 23 23
25 26 27 37 39
An outlier is an observation which lies more than standard deviations away from the mean.
Show that there is exactly one outlier.
State, with a reason, whether the mean or the median would be the most suitable measure of central tendency for these data.
Did this page help you?
and are two events with x and y, where x0. Given that and are independent, find the following probabilities in terms of x and y:
A group of 18- to 25-year-olds, and a group of people over 65 years old, were asked whether they would prefer to holiday in Ibiza or Skegness. The following two-way table shows part of the results of the survey:
Ibiza | Skegness | total | |
18-25 | 99 | ||
over 65 | 45 | ||
total | 64 | 80 | 144 |
Given that for the people in the sample the events ‘is over 65’ and ‘prefers to holiday in Ibiza’ are independent, find the missing values and complete the table of survey results.
Did this page help you?
The IQ of a student at Calculus High can be modelled as a random variable with the distribution . The headteacher decides to play classical music during lunchtimes and suspects that this has caused a change in the average IQ of the students.
Write suitable null and alternative hypotheses to test the headteacher’s suspicion.
The headteacher selects 10 students and asks them to complete an IQ test. Their scores are:
127, 127, 129, 130, 130, 132, 132, 132, 133, 138
Test, at the 5% level of significance, whether there is evidence to support the headteacher’s suspicion.
It was later discovered that the 10 students used in the sample were all in the same advanced classes.
Comment on the validity of the conclusion of the test based on this information.
Did this page help you?
The random variable has the probability function
Find the value of .
Find
Did this page help you?
The random variable . Find:
Did this page help you?
It is known that customers have an 83% success rate when attempting to order bundles of 5 or more festival tickets from a particular website. A second website claims that its customers have a greater probability of success.
State suitable null and alternative hypotheses to test the second website's claim.
In one day, 1159 out of 1358 bundles of 5 or more tickets are successfully ordered from the second website.
Test the second website's claim using a 1% significance level.
It is suggested that instead of using a 1% significance level for the test, the critical region could have been used for testing the second website's claim against observed data for the number of successes out of 1358 attempted orders.
Find the probability of incorrectly rejecting the null hypothesis if that critical region is used.
Did this page help you?
The following histogram shows the distribution of weights, in grams, of a population of dormice in the UK:
The mean and standard deviation for the weights of the dormouse population are calculated to be 20.5 g and 2.6 g respectively. A normal curve is drawn corresponding to these values.
Write down the values of the weight that correspond to the line of symmetry and the points of inflection of the normal curve.
Use the properties of the normal distribution to determine whether each of the following statements is likely to be true. In each case give a reason for your answer.
Did this page help you?