Functions (Cambridge (CIE) A Level Maths: Pure 1): Exam Questions

Exam code: 9709

2 hours23 questions
1
Sme Calculator
4 marks

State whether the following mappings are one-to-one, many-to-one, one-to-many or many-to-many.

(i) straight f colon x rightwards arrow from bar 4 x minus 2 space

(ii) straight f colon x rightwards arrow from bar x squared

(iii) straight f colon x rightwards arrow from bar x over 4

(iv) straight f colon x rightwards arrow from bar √ x space

2a
Sme Calculator
3 marks

The function straight f open parentheses straight x close parentheses is defined as

      straight f left parenthesis x right parenthesis equals x squared minus 8 x minus 20               x element of straight real numbers                            

Sketch the graph of y space equals space straight f open parentheses straight x close parentheses, giving the coordinates of any points where the graph intersects the coordinate axes.

2b
Sme Calculator
2 marks

The minimum point on the graph of y space equals space straight f open parentheses straight x close parentheses has x-coordinate 4. Find the range of straight f open parentheses x close parentheses.

3
Sme Calculator
3 marks

The function straight f open parentheses x close parentheses is defined as

      f left parenthesis x right parenthesis equals x squared minus 9         x space greater or equal than space 3

Work out the range of straight f open parentheses straight x close parentheses.

If the domain of straight f open parentheses straight x close parentheses is changed to x greater or equal than space 0 comma what would be the new range of straight f open parentheses x close parentheses?

4a
Sme Calculator
4 marks

The functions straight f open parentheses x close parentheses and g open parentheses x close parentheses are defined as follows

straight f open parentheses x close parentheses space equals space 3 straight x space plus space 5            x space element of space straight real numbers

g open parentheses x close parentheses space equals space minus 2 x               x space element of space straight real numbers

Find

(i) straight f g left parenthesis x right parenthesis

(ii) g straight f left parenthesis x right parenthesis

4b
Sme Calculator
2 marks

Solve the equation straight f open parentheses x close parentheses space equals space g space open parentheses x close parentheses.

5a
Sme Calculator
3 marks

The function straight f open parentheses straight x close parentheses is defined by

      straight f open parentheses straight x close parentheses space equals space 3 straight x to the power of 2 space end exponent plus space 1               x space element of space straight real numbers

Find the inverse of straight f open parentheses x close parentheses comma space straight f to the power of negative 1 end exponent open parentheses x close parentheses.

5b
Sme Calculator
2 marks

Find the domain and range for straight f to the power of negative 1 end exponent open parentheses straight x close parentheses.

1
Sme Calculator
4 marks

State whether the following mappings are one-to-one, many-to-one, one-to-many or many-to-many.

(i) straight f colon x rightwards arrow from bar x squared

(ii) straight f colon x rightwards arrow from bar 3 x plus 1 space

(iii) straight f colon x rightwards arrow from bar left parenthesis x plus 1 right parenthesis cubed

(iv) straight f colon x rightwards arrow from bar plus-or-minus square root of x

2a
Sme Calculator
3 marks

The function straight f open parentheses x close parentheses is defined as

      straight f open parentheses straight x close parentheses space equals space straight x to the power of 2 space end exponent plus space 2 straight x space minus space 3            x space element of space straight real numbers

Sketch the graph of y space equals space straight f open parentheses straight x close parentheses comma giving the coordinates of any points where the graph intercepts the coordinate axes and the coordinates of the turning point.

 

2b
Sme Calculator
1 mark

Write down the range of straight f open parentheses straight x close parentheses.

3a
Sme Calculator
2 marks

The function straight f open parentheses straight x close parentheses is defined as

      straight f left parenthesis x right parenthesis equals x squared minus 4         x space greater or equal than space 0

Work out the range of straight f open parentheses straight x close parentheses.

3b
Sme Calculator
1 mark

If the domain of straight f open parentheses straight x close parentheses is changed to x space less or equal than space 0 comma what is the range of straight f open parentheses straight x close parentheses?

4a
Sme Calculator
1 mark

The functions straight f open parentheses straight x close parentheses and g open parentheses x close parentheses are defined as follows

straight f left parenthesis x right parenthesis equals x squared              x space element of space straight real numbers

g open parentheses x close parentheses space equals space 4 x space minus space 3             x element of space straight real numbers space

Write down the range of straight f space open parentheses straight x close parentheses.

4b
Sme Calculator
4 marks

Find     

(i) straight f g left parenthesis x right parenthesis

(ii) g f left parenthesis x right parenthesis

4c
Sme Calculator
2 marks

Solve the equation straight f open parentheses straight x close parentheses space equals space straight g open parentheses straight x close parentheses. 

5a
Sme Calculator
3 marks

The graph of y space equals space straight f open parentheses straight x close parentheses is shown below.

screenshot-2023-07-26-at-8-03-18-am

Use the graph to write down the domain and range of straight f open parentheses straight x close parentheses.

Given that the point (1, 1) lies on the dotted line, write down the equation of the line.

5b
Sme Calculator
2 marks

On the diagram above sketch the graph of y space equals space straight f to the power of negative 1 end exponent open parentheses straight x close parentheses.

6a
Sme Calculator
2 marks

The function straight f left parenthesis x right parenthesis is defined as

      straight f colon space x rightwards arrow from bar space fraction numerator open parentheses x squared space plus space 1 close parentheses over denominator x squared end fraction            x space element of space straight real numbers comma space x not equal to space 0

Show that straight f space open parentheses straight x close parentheses can be written in the form

      straight f colon space straight x space rightwards arrow from bar space 1 space plus space 1 over straight x squared

6b
Sme Calculator
2 marks

Explain why the inverse of  straight f open parentheses x close parentheses does not exist and suggest an adaption to its domain so the inverse does exist.

6c
Sme Calculator
4 marks

The domain of straight f open parentheses straight x close parentheses is changed to x space greater than space 0. Find an expression for straight f to the power of negative 1 end exponent open parentheses straight x close parentheses and state its domain and range.

7a
Sme Calculator
3 marks

The functions  straight f open parentheses straight x close parentheses and g open parentheses x close parentheses are defined as follows

straight f left parenthesis x right parenthesis equals 1 half left parenthesis 4 x minus 3 right parenthesis              x space element of space straight real numbers

g open parentheses x close parentheses space equals space 0.5 x space plus space 0.75           x space element of space straight real numbers

Find

(i) straight f g open parentheses x close parentheses

(ii) g straight f open parentheses straight x close parentheses

7b
Sme Calculator
3 marks

Write down straight f to the power of negative 1 end exponent open parentheses straight x close parentheses and state its domain and range.

1a
Sme Calculator
1 mark

It is given

      straight f left parenthesis x right parenthesis equals 2 over x

Write down the domain of the function straight f open parentheses straight x close parentheses.

1b
Sme Calculator
3 marks

Sketch the graph of y space equals space straight f open parentheses straight x close parentheses comma stating the coordinates of any intersections with the coordinate axes and the equations of any asymptotes.

1c
Sme Calculator
1 mark

Write down the range of straight f open parentheses straight x close parentheses.

 

2a
Sme Calculator
1 mark

The function straight f open parentheses straight x close parentheses is defined as

      straight f open parentheses straight x close parentheses space equals space straight x open parentheses straight x space plus space 3 close parentheses squared space plus space 1            x space greater or equal than space 0

Work out the range of straight f open parentheses straight x close parentheses.

            

2b
Sme Calculator
2 marks

If the domain of straight f open parentheses straight x close parentheses is changed to x space less or equal than space 0, what is the range of straight f open parentheses straight x close parentheses?

3a
Sme Calculator
1 mark

The functions straight f open parentheses straight x close parentheses and g open parentheses x close parentheses are defined as follows

      straight f left parenthesis x right parenthesis equals 3 x squared plus 2            x space element of space straight real numbers

      g open parentheses x close parentheses space equals space 1 space minus space 3 x         x space element of space straight real numbers

Write down the range of straight f space open parentheses straight x close parentheses.

3b
Sme Calculator
4 marks

Find

(i) straight f g open parentheses x close parentheses

(ii) g straight f open parentheses x close parentheses

3c
Sme Calculator
2 marks

Solve the equation straight f open parentheses straight x close parentheses space equals space straight g space open parentheses straight x close parentheses space plus space 1

4a
Sme Calculator
3 marks

The graph of y equals space straight f open parentheses straight x close parentheses is shown below.

screenshot-2023-07-26-at-2-53-08-pm

(i) Use the graph to write down the domain and range of straight f open parentheses straight x close parentheses.

(ii) Write down the equation of the dotted line on the graph.

4b
Sme Calculator
2 marks

 On the diagram above sketch the graph of y space equals space straight f to the power of negative 1 end exponent open parentheses straight x close parentheses.

5a
Sme Calculator
3 marks

The functions straight f open parentheses x close parentheses and straight g open parentheses x close parentheses are defined as follows

straight f open parentheses x close parentheses equals e to the power of x minus 2 end exponent space space space space space space space space space space space space space space space space space space space space x element of straight real numbers
straight g open parentheses x close parentheses equals 2 plus ln space x space space space space space space space space space space space space space space space x element of straight real numbers comma space x greater than 0

Find

(i) fg open parentheses x close parentheses

(ii) gf open parentheses x close parentheses

5b
Sme Calculator
2 marks

Write down straight f to the power of negative 1 end exponent space open parentheses straight x close parentheses and state its domain and range.

5c
Sme Calculator
2 marks

The graphs of straight f open parentheses straight x close parentheses and straight f to the power of negative 1 end exponent space open parentheses straight x close parentheses  are drawn on the same axes. Describe the transformation that would map one graph onto the other.

1a
Sme Calculator
2 marks

It is given

      straight f left parenthesis x right parenthesis equals 4 x cubed plus 4 x squared minus 7 x plus 2

Write down the domain and range of the function straight f open parentheses x close parentheses.

1b
Sme Calculator
3 marks

Sketch the graph of y space equals space straight f open parentheses straight x close parentheses comma stating the coordinates of any intersections with the coordinate axes. (You do not need to give the coordinates of any turning points.)

2a
Sme Calculator
2 marks

The function straight f open parentheses x close parentheses is defined as

      f left parenthesis x right parenthesis equals left parenthesis x minus 3 right parenthesis squared left parenthesis x minus 4 right parenthesis squared            2 space less or equal than space x space less or equal than space 5

Work out the range of straight f open parentheses x close parentheses.

2b
Sme Calculator
1 mark

If the domain of straight f space open parentheses straight x close parentheses  is changed to  x space less or equal than space 2 comma , what is the range of straight f open parentheses straight x close parentheses ?

2c
Sme Calculator
1 mark

State another domain for straight f open parentheses straight x close parentheses that would have the same effect as that in part (b).

3a
Sme Calculator
1 mark

The functions straight f open parentheses straight x close parentheses and g open parentheses x close parentheses are defined as follows

      straight f left parenthesis x right parenthesis equals x squared minus 2 space              x space element of space straight real numbers

      g open parentheses x close parentheses space equals space 1 space minus space 2 over x          x space element of space straight real numbers comma space x not equal to space 0

Write down the range of straight f open parentheses straight x close parentheses.

3b
Sme Calculator
3 marks

Leaving your answers as single fractions, find

      (i) straight f g left parenthesis x right parenthesis

      (ii) space g straight f left parenthesis x right parenthesis

3c
Sme Calculator
2 marks

Solve the equation straight f open parentheses straight x close parentheses space equals space straight g open parentheses straight x close parentheses

4a
Sme Calculator
3 marks

The graphs of y space equals space straight f open parentheses straight x close parentheses and y space equals space x (dotted line) are shown in the diagram below. straight f open parentheses straight x close parentheses has rotational symmetry about the origin and for x space greater than space 0, there is a vertical line of symmetry at x space equals space 4.5.

Use the graph to write down the domain and range of straight f open parentheses straight x close parentheses.

On the diagram above sketch the reflection of straight f open parentheses straight x close parentheses in the line y = x and explain why this cannot be the graph of straight f to the power of negative 1 end exponent open parentheses straight x close parentheses. 

4b
Sme Calculator
2 marks

(i) Given that the maximum solution to straight f open parentheses straight x close parentheses space equals space 6 is x space equals space 6, state the restriction on the domain of straight f open parentheses x close parentheses spacesuch that straight f to the power of negative 1 end exponent open parentheses x close parentheses exists.

(ii) Hence, or otherwise, write down the domain and range of straight f to the power of negative 1 end exponent open parentheses x close parentheses.

5a
Sme Calculator
1 mark

The function straight f open parentheses x close parentheses is defined as

      straight f colon x rightwards arrow from bar square root of left parenthesis 25 minus x squared right parenthesis end root            x space element of space straight real numbers comma space minus 5 space less or equal than space x space less or equal than space 5

Explain why the inverse of straight f open parentheses straight x close parentheses does not exist.

5b
Sme Calculator
2 marks

Suggest an adaption to the domain of straight f open parentheses x close parentheses so the following conditions are met:

  • the inverse of straight f open parentheses x close parentheses exists,

  • the graph of y space equals space straight f open parentheses straight x close parentheses lies in the first quadrant only, and,

  • the domain of straight f open parentheses straight x close parentheses is as large as possible.

State the range for your adapted straight f open parentheses straight x close parentheses.

5c
Sme Calculator
3 marks

The domain of straight f open parentheses x close parentheses spaceis changed to negative 5 space less or equal than space x space less or equal than space 0.  Find an expression for straight f to the power of negative 1 end exponent open parentheses straight x close parentheses and state its domain and range.

6a
Sme Calculator
3 marks

The functions  straight f open parentheses x close parentheses  and g open parentheses x close parentheses are defined as follows

      straight f open parentheses x close parentheses space equals open parentheses space x space minus space 1 close parentheses squared space minus 4                 x space element of space straight real numbers comma space x space greater or equal than space 1

      g left parenthesis x right parenthesis equals 1 plus square root of x plus 4 end root               x space element of space straight real numbers comma space x space greater or equal than space minus 4

Find

      (i) fg open parentheses x close parentheses

      (ii)  g straight f open parentheses x close parentheses

 

6b
Sme Calculator
2 marks

Write down straight f to the power of negative 1 end exponent open parentheses x close parentheses and state its domain and range.

6c
Sme Calculator
2 marks

The graphs of  straight f open parentheses straight x close parentheses  and straight f to the power of negative 1 end exponent open parentheses straight x close parentheses are drawn on the same axes. Describe the transformation that would map one graph onto the other.

6d
Sme Calculator
2 marks

Find the coordinates of the point where the graphs of y space equals space straight f open parentheses x close parentheses and  y space equals space straight f to the power of negative 1 end exponent open parentheses x close parentheses meet.