E(X) & Var(X) of Discrete Random Variables (Edexcel A Level Further Maths: Further Statistics 1)

Revision Note

Mark

Author

Mark

Last updated

E(X) of DRVs

What does E(X) mean and how do I calculate E(X)?

  • straight E open parentheses X close parentheses means the expected value or the mean of a random variable X
    • The expected value does not need to be an obtainable value of X
    • For example: the expected value number of times a coin will land on tails when flipped 5 times is 2.5
  • For a discrete random variable, it is calculated by:
    • Multiplying each value of X with its corresponding probability
    • Adding all these terms together

straight E left parenthesis X right parenthesis equals sum x straight P left parenthesis X equals x right parenthesis

  • Look out for symmetrical distributions (where the values of X are symmetrical and their probabilities are symmetrical)
    • The mean of these is the same as the median
    • For example: if X can take the values 1, 5, 9 with probabilities 0.3, 0.4, 0.3 respectively then by symmetry the mean is 5

Worked example

Daphne pays $15 to play a game where she wins a prize of $1, $5, $10 or $100. The random variable W represents the amount she wins and has the probability distribution shown in the following table:

w 1 5 10 100
straight P left parenthesis W equals w right parenthesis 0.35 0.5 0.05 0.1
 
Calculate the expected value of Daphne's prize.

expected-values-we

Var(X) of DRVs

How do I calculate E(X2)?

  • straight E open parentheses X squared close parentheses means the expected value or the mean of the random variable X squared
  • It is calculated by:
    • Squaring each value of X to get the values of X squared
    • Multiplying each value of X squared by its corresponding probability
    • Adding all these terms together
  • It's formula is straight E open parentheses X close parentheses equals sum from blank to blank of x squared P open parentheses X equals x close parentheses

Is E(X²) equal to (E(X))²?

  • No!
  • straight E open parentheses X squared close parentheses is the mean of the squares of X
  • open parentheses straight E open parentheses X close parentheses close parentheses squared is the square of the mean of X
  • For example, if X = 1 or X = -1, both with probabilities of 0.5 then
    • the mean is 0 so open parentheses straight E open parentheses X close parentheses close parentheses squared = 02 = 0
    • but the squares of X are 1 and 1, so straight E open parentheses X squared close parentheses equals 1

What is Var(X) and how do I calculate Var(X)?

  • Var open parentheses X close parentheses means the variance of a random variable X
    • How spread out X values are from their mean
      • High Var open parentheses X close parentheses means more spread out
    • How consistent X values are around their mean
      • High Var open parentheses X close parentheses means more variability so less consistent
  • For any random variable this can be calculated using the formula

Var open parentheses X close parentheses equals straight E left parenthesis X squared right parenthesis minus left parenthesis straight E left parenthesis X right parenthesis right parenthesis squared

    • This is the mean of the squares of X minus the square of the mean of X
  • Var open parentheses X close parentheses is always positive
  • The standard deviation of a random variable X is square root of Var open parentheses X close parentheses end root
  • An alternative formula is Var open parentheses X close parentheses equals straight E open square brackets open parentheses X minus straight E open parentheses X close parentheses close parentheses squared close square brackets
    • The expected value of the squares of the distances from the mean
    • This is its formal definition, but less useful in practice

How do I find E(X2) if Var(X) and E(X) are known?

  • Rearrange the formula Var open parentheses X close parentheses equals straight E open parentheses X squared close parentheses minus open parentheses straight E open parentheses X close parentheses close parentheses to the power of 2 space end exponent
    • straight E open parentheses X squared close parentheses equals Var open parentheses X close parentheses plus open parentheses straight E open parentheses X close parentheses close parentheses squared
    • Then substitute in the values for Var open parentheses X close parentheses and straight E open parentheses X close parentheses

Examiner Tip

  • Check if your answer makes sense:
    • The mean should fit within the range of the values of X.
    • The variance must be positive.

Worked example

The discrete random variable X has the probability distribution shown in the following table:

x 2 3 5 7
straight P left parenthesis X equals x right parenthesis 0.1 0.3 0.2 0.4
(a)
Find the value of straight E left parenthesis X right parenthesis.

3-1-2-ex-_-varx-discrete-we-solution_a

(b)
Find the value of straight E left parenthesis X squared right parenthesis.

 3-1-2-ex-_-varx-discrete-we-solution_b

(c)
Find the value of Var left parenthesis X right parenthesis .

3-1-2-ex-_-varx-discrete-we-solution_c

E(g(X)) of DRVs

How do I calculate E(g(X))?

  • straight E open parentheses X squared close parentheses means sum from blank to blank of x to the power of 2 space end exponent straight P open parentheses X equals x close parentheses 
    • The expected value (mean) of X squared
    • X squared is a function of X
  • Let straight g open parentheses X close parentheses be any function of X
    • Then straight E open parentheses straight g open parentheses X close parentheses close parentheses equals sum from blank to blank of space straight g open parentheses x close parentheses straight P open parentheses X equals x close parentheses
    • Multiply values of straight g stretchy left parenthesis x stretchy right parenthesis by their corresponding probabilities
  • straight E open parentheses straight g open parentheses X close parentheses close parentheses does not mean substitute the value of straight E open parentheses X close parentheses into straight g open parentheses x close parentheses
    • straight E open parentheses straight g open parentheses X close parentheses close parentheses not equal to straight g open parentheses straight E open parentheses X close parentheses close parentheses

3-1-2-ex-_-varx-discrete-diagram-2

Worked example

The random variable X has the following probability distribution.
 

x 1 8 27
straight P open parentheses X equals x close parentheses 0.1 0.3 0.6

Determine which out of straight E open parentheses cube root of X close parentheses or straight E open parentheses ln space X close parentheses is greater.

egx-of-drvs

You've read 0 of your 5 free revision notes this week

Sign up now. It’s free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Mark

Author: Mark

Expertise: Maths

Mark graduated twice from the University of Oxford: once in 2009 with a First in Mathematics, then again in 2013 with a PhD (DPhil) in Mathematics. He has had nine successful years as a secondary school teacher, specialising in A-Level Further Maths and running extension classes for Oxbridge Maths applicants. Alongside his teaching, he has written five internal textbooks, introduced new spiralling school curriculums and trained other Maths teachers through outreach programmes.