Transformations using a Matrix (Edexcel A Level Further Maths): Revision Note
Transformations using a Matrix
What is a transformation matrix?
A transformation matrix is used to determine the coordinates of an image from the transformation of an object
reflections, rotations, enlargements and stretches
Commonly used transformation matrices include
(In 2D) a multiplication by any 2x2 matrix could be considered a transformation (in the 2D plane)
This can be done similarly in higher dimensions
An individual point in the plane can be represented as a position vector,
Several points, that create a shape say, can be written as a position matrix
A matrix transformation will be of the form
where
represents any point in the 2D plane
is a given matrix
How do I find the coordinates of an image under a transformation?
The coordinates (x’, y’) - the image of the point (x, y) under the transformation with matrix
are given by
Similarly, for a position matrix
A calculator can be used for matrix multiplication
If matrices involved are small, it may be as quick to do this manually
STEP 1 Determine the transformation matrix (T) and the position matrix (P) The transformation matrix, if uncommon, will be given in the question The position matrix is determined from the coordinates involved, it is best to have the coordinates in order, to avoid confusion
STEP 2 Set up and perform the matrix multiplication required to determine the image position matrix, P’
P’ = TP
STEP 3 Determine the coordinates of the image from the image position matrix, P’
How do I find the coordinates of the original point given the image under a transformation?
To ‘reverse’ a transformation we would need the inverse transformation matrix
i.e. T-1
For a 2x2 matrix
the inverse is given by
where
A calculator can be used to work out inverse matrices
You would rearrange
Examiner Tips and Tricks
Read the question carefully to determine if you have the points before or after a transformation
Worked Example
A quadrilateral, Q, has the four vertices A(2, 5), B(5, 9), C(11, 9) and D(8, 5).
Find the coordinates of the image of Q under the transformation .

Determinant of a Transformation Matrix
What does the determinant of a transformation matrix (A) represent?
The absolute value of the determinant of a transformation matrix is the area scale factor (2D) or volume scale factor (3D)
Area scale factor = |det A| if 2x2
Volume scale factor = |det A| if 3x3
The area/volume of the image will be product of the area/volume of the object and |det A|
Area of image = |det A| × Area of object (if 2x2)
Volume of image = |det A| × Volume of object (if 3x3)
Note the area will reduce if |det A| < 1
If the determinant is negative then the orientation of the shape will be reversed
For example: the shape has been reflected
How do I solve problems involving the determinant of a transformation matrix?
Problems may involve comparing areas of objects and images
This could be as a percentage, proportion, etc
Missing value(s) from the transformation matrix (and elsewhere) can be deduced if the determinant of the transformation matrix is known
Remember to use the absolute value of the determinant
This can lead to multiple answers to equations
Use your calculator to solve these
Worked Example
An isosceles triangle has vertices A(3, 1), B(15, 1) and C(9, 9).
a) Find the area of the isosceles triangle.

b) Triangle △ABC is transformed using the matrix . Find the area of the transformed triangle.

c) Triangle △ABC is now transformed using the matrix where
. Given that the area of the image is twice as large as the area of the object, find the value of
.

You've read 0 of your 5 free revision notes this week
Sign up now. It’s free!
Did this page help you?