Loci in Argand Diagrams (Edexcel A Level Further Maths: Core Pure)

Revision Note

Test yourself
Amber

Author

Amber

Last updated

Loci in Argand Diagrams

How do I sketch the locus of bold Re blank bold italic z equals bold italic k or bold Im blank bold italic z equals bold italic k on an Argand diagram?

  • All complex numbers, z equals x plus straight i y, that satisfy the equation Re space z equals k lie on a vertical line with Cartesian equation x space equals space k
    • Any complex number along this vertical line will have a real part of k
  • All complex numbers, z equals x plus straight i y, that satisfy the equation Im blank z equals k lie on a horizontal line with Cartesian equation y space equals space k
    • Any complex number along this horizontal line will have an imaginary part of k
  • E.g. The loci Re space z equals 4 and Im blank z equals negative 3 are represented by the vertical line x space equals space 4 and the horizontal line y space equals space minus 3  

8-2-4_notes_fig1

Sketching the loci of  bold Re bold space bold italic z bold equals bold 4 and bold Im space bold italic z bold equals bold minus bold 3

How do I sketch the locus of open vertical bar bold italic z minus bold italic a close vertical bar equals bold italic k on an Argand diagram?

  • All complex numbers, z, that satisfy the equation open vertical bar z close vertical bar space equals space k lie on a circle of radius k about the origin
    • E.g. the locus of open vertical bar z close vertical bar space equals space 10 is a circle of radius 10, centred at the origin, as every complex number on that circle has a modulus of 10
  • For a given complex number, a, all complex numbers, z, that satisfy the equation open vertical bar z space minus space a close vertical bar space equals space k lie on a circle of radius k about the centre a
    • This is because open vertical bar z space minus space a close vertical bar represents the distance between complex numbers z and a 
    • E.g. the locus of open vertical bar z minus open parentheses 3 plus 4 straight i close parentheses close vertical bar equals 10 is a circle of radius 10 about left parenthesis 3 plus 4 straight i right parenthesis
  • Many equations need to be adjusted algebraically into the correct open vertical bar z space minus space a close vertical bar form
    • E.g. to find the centre of the circle open vertical bar z minus 8 straight i plus 3 close vertical bar equals 12, first rewrite it as open vertical bar z minus open parentheses negative 3 plus 8 straight i close parentheses close vertical bar equals 12, giving the centre as negative 3 plus 8 straight i
    • E.g. to find the centre of the circle open vertical bar z plus straight i close vertical bar equals 2, first rewrite it as open vertical bar z minus open parentheses negative straight i close parentheses close vertical bar equals 2 , giving the centre as open parentheses negative straight i close parentheses
    • Note that the centre of the circle open vertical bar z close vertical bar space equals space 5 is the origin (it can be thought of as open vertical bar z minus 0 close vertical bar equals 5)
  • In order to sketch correctly, check whether the origin lies outside, on or inside the circle
    • E.g. for the locus of open vertical bar z minus open parentheses 3 plus 4 straight i close parentheses close vertical bar equals 10 comma the distance from the centre of the circle, 3 plus 4 straight i, to the origin is 5 (by Pythagoras), which is less than the radius of 10; a sketch must therefore show the origin inside the circle
  • By knowing the radius and centre of a circle, the Cartesian equation of the circle can be found
    • The circle open vertical bar z minus open parentheses 3 plus 4 straight i close parentheses close vertical bar equals 10 has a radius of 10 and centre of left parenthesis 3 comma space 4 right parenthesis in coordinates, so the equation of the circle is open parentheses x minus 3 close parentheses squared plus open parentheses y minus 4 close parentheses squared equals 100

8-2-4_notes_fig2

Sketching the loci of  begin bold style stretchy vertical line z stretchy vertical line end style bold equals bold 10 and begin bold style stretchy vertical line z minus open parentheses 3 plus 4 i close parentheses stretchy vertical line end style bold equals bold 10

How do I sketch the locus of open vertical bar bold italic z minus bold italic a close vertical bar equals vertical line bold italic z minus bold italic b vertical line on an Argand diagram?

  • For two given complex numbers, a and b, all complex numbers, z, that satisfy the equation open vertical bar z minus a close vertical bar equals vertical line z minus b vertical line lie on the perpendicular bisector of a and b
    • This is because the distance from z to a must equal the distance from z to b
      • a condition that is satisfied by all the complex numbers, z, on the perpendicular bisector of a and b
    • E.g. the locus of open vertical bar z minus 3 plus 2 straight i close vertical bar equals vertical line z plus 8 vertical line can be rewritten as open vertical bar z minus open parentheses 3 minus 2 straight i close parentheses close vertical bar equals open vertical bar z minus open parentheses negative 8 close parentheses close vertical bar which is the perpendicular bisector of the points 3 minus 2 straight i and negative 8
  • A sketch of the perpendicular bisector is sufficient, without finding its exact equation (though this could be found using coordinate geometry methods)

8-2-4_notes_fig3

Sketching the loci of  stretchy vertical line bold italic z minus i stretchy vertical line equals open vertical bar bold italic z minus 3 i close vertical barand stretchy vertical line bold italic z minus open parentheses 3 minus 2 i close parentheses stretchy vertical line equals open vertical bar bold italic z minus open parentheses negative 8 close parentheses close vertical bar

How do I sketch the locus of bold arg bold space left parenthesis bold italic z minus bold italic a right parenthesis equals bold italic alpha  on an Argand diagram?

  • All complex numbers, z, that satisfy the equation arg space z equals alpha lie on a half-line from the origin at an angle of alpha to the positive real axis
    • Although the half-line starts at the origin, the origin itself (z space equals space 0) does not satisfy the equation arg space z equals alpha  as arg space 0 is undefined (there is no angle at the origin)
    • To show the exclusion of z space equals space 0 from the locus of arg space z equals alpha, a small open circle at the origin is used
    • E.g. the locus of arg space z equals straight pi over 4 is a half-line of angle straight pi over 4 to the positive real axis, starting from the origin, with an open circle at the origin
  • For a given complex number, a, all complex numbers, z, that satisfy the equation arg space left parenthesis z minus a right parenthesis equals alpha lie on a half-line from the point a at an angle of alpha to the positive real axis, with an open circle to show the exclusion of z space equals space a
    • E.g. the locus of arg space open parentheses z minus 1 minus 5 straight i close parentheses equals fraction numerator 2 pi over denominator 3 end fraction can be rewritten as arg space open parentheses z minus open parentheses 1 plus 5 straight i close parentheses close parentheses equals fraction numerator 2 pi over denominator 3 end fraction, which is a half-line of angle fraction numerator 2 pi over denominator 3 end fractionmeasured from the point 1 plus 5 straight i, with an open circle at 1 plus 5 straight i to show its exclusion
  • In some cases, the equation of the half-line can be found using a sketch to help
    • E.g. the locus of arg space z equals pi over 4is the half-line y space equals space x for x space greater than space 0  
    • E.g. the locus of arg space open parentheses z minus left parenthesis 8 plus 5 straight i close parentheses equals negative pi over 4 can be thought of, in coordinate geometry, as the half-line through left parenthesis 8 comma space 5 right parenthesiswith gradient -1, giving y space equals negative x plus 13  for  x space greater than space 8
    • Whilst not examinable, the half-line equation for a more general angle, arg space z equals alpha, is y equals open parentheses tan space alpha close parentheses x for x space greater than space 0, as the gradient equals opposite over adjacent equals tan space alpha

8-2-4_notes_fig4

Sketching the loci of  bold arg bold space bold italic z bold equals bold pi over bold 4and bold arg bold left parenthesis bold italic z bold minus stretchy left parenthesis 1 plus 5 i right parenthesis stretchy right parenthesis bold equals fraction numerator bold 2 bold pi over denominator bold 3 end fraction

Examiner Tip

  • In the exam, do not worry about making your diagrams perfect.
  • A quick sketch with all the key features is sufficient.

Worked example

On separate axes, sketch the locus of points representing complex numbers, z, that satisfy the following equations:

a)
Im space z space equals space 2

al-fm-1-1-5-loci-in-argand-diagrams-we-solution-a

b)
vertical line z space plus space 5 space minus space 12 straight i vertical line space equals space 8

al-fm-1-1-5-loci-in-argand-diagrams-we-solution-b

c)
vertical line z space minus space 4 straight i vertical line space equals space vertical line z space plus space straight i space minus space 1 vertical line

edexcel-fm-core-pure-loci-in-argand-diagrams-fix1

d)
arg left parenthesis z italic space plus space straight i right parenthesis space equals space minus space straight pi over 3

edexcel-fm-core-pure-loci-in-argand-diagrams-fix2

You've read 0 of your 5 free revision notes this week

Sign up now. It’s free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Amber

Author: Amber

Expertise: Maths

Amber gained a first class degree in Mathematics & Meteorology from the University of Reading before training to become a teacher. She is passionate about teaching, having spent 8 years teaching GCSE and A Level Mathematics both in the UK and internationally. Amber loves creating bright and informative resources to help students reach their potential.