Nitriles (OCR A Level Chemistry)

Revision Note

Philippa Platt

Last updated

Formation of Nitriles

Carbon-carbon bond forming 

  • Carbon–carbon bond forming reactions are organic reactions in which a new carbon–carbon bond is formed
  • They are important in the production of many man-made chemicals such as pharmaceuticals and plastics
  • Carbon-carbon bonds can be formed via the following reactions
    • Formation of nitriles to extend the carbon chain
    • Frieidel-Crafts alkylation and acylation

Formation of nitriles

  • The nucleophile in this reaction is the cyanide, CN- ion
  • Ethanolic solution of potassium cyanide (KCN in ethanol) is heated under reflux with the halogenoalkane
  • The product is a nitrile
    • Eg. bromoethane reacts with ethanolic potassium cyanide when heated under reflux to form propanenitrile

 Halogen Compounds Electrophilic Substitution by KCN, downloadable AS & A Level Chemistry revision notes

The halogen is replaced by a cyanide group, CN -

  • The nucleophilic substitution of halogenoalkanes with KCN adds an extra carbon atom to the carbon chain
  • This reaction can therefore be used by chemists to make a compound with one more carbon atom than the best available organic starting material

Nucleophilic substitution of a haloalkane with CN-

Addition of HCN to carbonyl compounds

  • The nucleophilic addition of hydrogen cyanide to carbonyl compounds is a two-step process, as shown below7.2.3 Ethanal and CN Nucleophilic addition, downloadable AS & A Level Chemistry revision notes
  • In step 1, the cyanide ion attacks the carbonyl carbon to form a negatively charged intermediate
  • In step 2, the negatively charged oxygen atom in the reactive intermediate quickly reacts with aqueous H+ (either from HCN, water or dilute acid) to form 2-hydroxynitrile compounds,
    • e.g. 2-hydroxypropanenitrile

Reactions of Nitriles

Hydrolysis of nitriles

  • Nitriles are hydrolysed by either dilute acid or dilute alkali followed by acidification
    • Hydrolysis by dilute acid results in the formation of a carboxylic acid and ammonium salt
    • Hydrolysis by dilute alkali results in the formation of a sodium carboxylate salt and ammonia; Acidification is required to change the carboxylate ion into a carboxylic acid

  • The -CN group at the end of the hydrocarbon chain is converted to a -COOH group

Hydrolysis of nitriles by either dilute acid (1) or dilute alkali and acidification (2) will form a carboxylic acid

Reduction of Nitriles

  • Nitriles contain a -CN functional group which can be reduced to an -NH2 group
  • The nitrile vapour and hydrogen gas are passed over a nickel catalyst or LiAlH4 in dry ether can be used to form a primary amine

Reduction of Nitriles, downloadable AS & A Level Chemistry revision notes

Nitriles can be reduced with LiAlH4 or H2 and Ni catalyst

You've read 0 of your 5 free revision notes this week

Sign up now. It’s free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Philippa Platt

Author: Philippa Platt

Expertise: Chemistry

Philippa has worked as a GCSE and A level chemistry teacher and tutor for over thirteen years. She studied chemistry and sport science at Loughborough University graduating in 2007 having also completed her PGCE in science. Throughout her time as a teacher she was incharge of a boarding house for five years and coached many teams in a variety of sports. When not producing resources with the chemistry team, Philippa enjoys being active outside with her young family and is a very keen gardener.