Syllabus Edition

First teaching 2020

Last exams 2024

|

Reactions of Carboxylic Acids (CIE A Level Chemistry)

Revision Note

Test yourself
Francesca

Author

Francesca

Last updated

Reactions of Carboxylic Acids to Produce Acyl Chlorides

  • Acyl chlorides are compounds with the functional group -COCl
  • They look similar in structure to carboxylic acids but have a Cl atom instead of an -OH group attached to the carbonyl (C=O)
  • Acyl chlorides are more reactive than their corresponding carboxylic acids and are therefore often used as starting materials in the production of organic compounds such as esters
  • They can be prepared from the reaction of carboxylic acids with:
    • Solid phosphorus(V) chloride (PCl5)
    • Liquid phosphorus(III) chloride (PCl3) and heat
    • Liquid sulfur dichloride oxide (SOCl2)

  • For example, the acyl chloride ethanoyl chloride can be formed from ethanoic acid in the above reactions

Carboxylic Acids & Derivatives - Production of Acyl Chlorides, downloadable AS & A Level Chemistry revision notes

Production of acyl chlorides from their corresponding carboxylic acids

Further Oxidation of Carboxylic Acids

  • Carboxylic acids can be formed from the oxidation of primary alcohols
  • The primary alcohols are firstly oxidised to aldehydes and then further oxidised to carboxylic acids
  • Some carboxylic acids can get even further oxidised

Methanoic acid

  • Methanoic acid is a strong reducing agent and gets further oxidised to carbon dioxide (CO2)
  • The oxidation of methanoic acid can occur by:
    • Warming methanoic acid with mild oxidising agents such as Fehling’s or Tollens’ reagent
      • In a Fehling’s solution, the Cu2+ ion is reduced to Cu+ ion which precipitates as red Cu2O
      • With Tollens’ reagent, the Ag+ is reduced to Ag

    • Using stronger oxidising agents such as acidified KMnO4 or acidified K2Cr2O7
      • The purple KMnO4 solution turns colourless as Mn7+ ions are reduced to Mn2+ ions
      • The orange K2Cr2O7 solution turns green as the Cr6+ ions are reduced to Cr3+ ions

Ethanedioic acid

  • Another carboxylic acid that can get further oxidised is ethanedioic acid
  • A strong oxidising agent such as warm acidified KMnO4 is required for the oxidation of ethanedioic acid to carbon dioxide

 

Carboxylic Acids _ Derivatives - Further oxidation of ethanedioic acid, downloadable AS & A Level Chemistry revision notes

Ethanedioic acid is a dicarboxylic acid that can get further oxidised to carbon dioxide

You've read 0 of your 10 free revision notes

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Francesca

Author: Francesca

Expertise: Head of Science

Fran studied for a BSc in Chemistry with Forensic Science, and since graduating taught A level Chemistry in the UK for over 11 years. She studied for an MBA in Senior Leadership, and has held a number of roles during her time in Education, including Head of Chemistry, Head of Science and most recently as an Assistant Headteacher. In this role, she used her passion for education to drive improvement and success for staff and students across a number of subjects in addition to Science, supporting them to achieve their full potential. Fran has co-written Science textbooks, delivered CPD for teachers, and worked as an examiner for a number of UK exam boards.