Syllabus Edition

First teaching 2020

Last exams 2024

|

Kinetics Calculations (CIE A Level Chemistry)

Revision Note

Test yourself
Francesca

Author

Francesca

Last updated

Kinetics: Calculations

Order of reaction

  • The order of reaction shows how the concentration of a reactant affects the rate of reaction

Rate = k [A]m [B]n

  • When m or n is zero = the concentration of the reactants does not affect the rate
  • When the order of reaction (m or n) of a reactant is 0, its concentration is ignored
  • The overall order of reaction is the sum of the powers of the reactants in a rate equation
  • For example, in the reaction below, the overall order of reaction is 2 (1 + 1)

Rate = k [NO2] [Cl2]

Order of reaction from concentration-time graphs

  • In a zero-order the concentration of the reactant is inversely proportional to time
    • This means that the concentration of the reactant decreases with increasing time
    • The graph is a straight line going down

Reaction Kinetics - Zero Order Concentration, downloadable AS & A Level Chemistry revision notes

Concentration-time graphs of a zero-order reaction

  • In a first-order reaction the concentration of the reactant decreases with time
    • The graph is a curve going downwards and eventually plateaus

Reaction Kinetics - Second Order Concentration, downloadable AS & A Level Chemistry revision notes

Concentration-time graphs of a first-order reaction

  • In a second-order reaction the concentration of the reactant decreases more steeply with time
    • The concentration of reactant decreases more with increasing time compared to in a first-order reaction
    • The graph is a steeper curve going downwards

Reaction Kinetics - First Order Concentration, downloadable AS & A Level Chemistry revision notes

Concentration-time graphs of a second-order reaction

Order of reaction from initial rate

  • The progress of the reaction can be followed by measuring the initial rates of the reaction using various initial concentrations of each reactant
  • These rates can then be plotted against time in a rate-time graph
  • In a zero-order reaction the rate doesn’t depend on the concentration of the reactant
    • The rate of the reaction therefore remains constant throughout the reaction
    • The graph is a horizontal line
    • The rate equation is rate = k

Reaction Kinetics - Zero Order Rate, downloadable AS & A Level Chemistry revision notes

Rate-time graph of a zero-order reaction

  • In a first-order reaction the rate is directly proportional to the concentration of a reactant
    • The rate of the reaction decreases as the concentration of the reactant decreases when it gets used up during the reaction
    • The graph is a straight line
    • The rate equation is rate = k [A]

Reaction Kinetics - First Order Rate, downloadable AS & A Level Chemistry revision notes

Rate-time graph of a first-order reaction

  • In a second-order reaction, the rate is directly proportional to the square of concentration of a reactant
    • The rate of the reaction decreases more as the concentration of the reactant decreases when it gets used up during the reaction
    • The graph is a curved line
    • The rate equation is rate = k [A]2

Reaction Kinetics - Second Order Rate, downloadable AS & A Level Chemistry revision notes

Rate-time graphs of a second-order reaction

Order of reaction from half-life

  • The order of a reaction can also be deduced from its half-life (t1/2 )
  • For a zero-order reaction the successive half-lives decrease with time
    • This means that it would take less time for the concentration of reactant to halve as the reaction progresses

  • The half-life of a first-order reaction remains constant throughout the reaction
    • The amount of time required for the concentration of reactants to halve will be the same during the entire reaction

  • For a second-order reaction, the half-life increases with time
    • This means that as the reaction is taking place, it takes more time for the concentration of reactants to halve

Reaction Kinetics - Half-Life, downloadable AS & A Level Chemistry revision notes

Half-lives of zero, first and second-order reactions

Calculating the initial rate

  • The initial rate can be calculated by using the initial concentrations of the reactants in the rate equation
  • For example, in the reaction of bromomethane (CH3Br) with hydroxide (OH-) ions to form methanol (CH3OH) the reaction equation and rate are as follows:

CH3Br + OH- → CH3OH + Br- (aq)

Rate = k [CH3Br] [OH-]

Where k = 1.75 x 10-2 dm-2 mol-1 s-1

  • If the initial concentrations of CH3Br and OH- are 0.0200 and 0.0100 mol dm-3 respectively, the initial rate of reaction is:

Rate = k [CH3Br] [OH-]

Initial rate = 1.75 x 10-2 x (0.0200) x (0.0100)

Initial rate = 3.50 x 10-6 mol dm-3 s-1

Calculating Units

  • When you are asked to calculate the rate constant, k, for a reaction you must also be able to deduce the units
  • This is done by replacing the values in the rearranged rate equation with the units of that value
  • The units can then be combined or cancelled as required
  • For example, to calculate the units for the above reaction:

You've read 0 of your 10 free revision notes

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Francesca

Author: Francesca

Expertise: Head of Science

Fran studied for a BSc in Chemistry with Forensic Science, and since graduating taught A level Chemistry in the UK for over 11 years. She studied for an MBA in Senior Leadership, and has held a number of roles during her time in Education, including Head of Chemistry, Head of Science and most recently as an Assistant Headteacher. In this role, she used her passion for education to drive improvement and success for staff and students across a number of subjects in addition to Science, supporting them to achieve their full potential. Fran has co-written Science textbooks, delivered CPD for teachers, and worked as an examiner for a number of UK exam boards.