Mitochondria & the Need for Energy (AQA A Level Biology)
Revision Note
Written by: Alistair Marjot
Reviewed by: Lára Marie McIvor
Structure & Function of the Mitochondria
Mitochondria are rod-shaped organelles 0.5 - 1.0 µm in diameter
They are the site of aerobic respiration in eukaryotic cells
The function of mitochondria is to synthesize ATP
Synthesis of ATP in the mitochondria occurs during the last stage of respiration called oxidative phosphorylation
This relies on membrane proteins that make up the ‘electron transport chain’ and the ATP synthase enzyme – the details of this are covered later in the notes
Structure
Mitochondria have two phospholipid membranes
The outer membrane is:
Smooth
Permeable to several small molecules
The inner membrane is:
Folded (cristae)
Less permeable
The site of the electron transport chain (used in oxidative phosphorylation)
Location of ATP synthase (used in oxidative phosphorylation)
The intermembrane space:
Has a low pH due to the high concentration of protons
The concentration gradient across the inner membrane is formed during oxidative phosphorylation and is essential for ATP synthesis
The matrix:
Is an aqueous solution within the inner membranes of the mitochondrion
Contains ribosomes, enzymes and circular mitochondrial DNA necessary for mitochondria to function
The structure of the mitochondria
Relationship between structure & function
The structure of mitochondria makes them well adapted to their function
They have a large surface area due to the presence of cristae (inner folds) which enables the membrane to hold many electron transport chain proteins and ATP synthase enzymes
More active cell types can have larger mitochondria with longer and more tightly packed cristae to enable the synthesis of more ATP because they have a larger surface area
The number of mitochondria in each cell can vary depending on cell activity
Muscle cells are more active and have more mitochondria per cell than fat cells
Examiner Tips and Tricks
Exam questions can sometimes ask you to explain how the structure of a mitochondrion helps it carry out its function effectively. Make sure to follow through with your answer. It is not enough to say that cristae increase the surface area of the inner membrane. You need to explain that an increased surface area of the inner membrane means there are more electron transport chain carriers and ATP synthase enzymes which results in more ATP being produced.Be prepared to identify the different structures and locations in a mitochondrion from an electron micrograph.
Respiration Produces ATP
Living organisms are composed of cells, and within each cell, many activities and processes are constantly being carried out to maintain life
Work in a living organism requires energy and usable carbon compounds
Essential work within organisms table
The source of energy & materials
For nearly all organisms the sun is the primary source of energy
The reactions of photosynthesis store energy in organic molecules
Light energy from the sun is transformed into chemical potential energy in the synthesis of carbohydrates
The carbohydrates formed are then used in the synthesis of ATP (from their breakdown) or are combined and modified to form all the usable organic molecules that are essential for all metabolic processes within the plant
Photosynthesis is carried out by the first organism in a food chain, such as plants and some other small organisms
Respiration in all living cells releases energy from the breakdown of organic molecules
Respiration involves the transfer of chemical potential energy from nutrient molecules (such as carbohydrates, fats and proteins) into a usable energy form (through the synthesis of ATP) that can be used for work within an organism
Glucose equations
glucose + oxygen → carbon dioxide + water + energy
C6H1206 + 6 O2 → 6 CO2 + 6 H20 + 2870kJ
Autotrophs are organisms that are able to synthesise their own usable carbon compounds from carbon dioxide in the atmosphere through photosynthesis
Heterotrophs don’t have this ability. They require a supply of pre-made usable carbon compounds which they get from their food
Examiner Tips and Tricks
According to the laws of thermodynamics, energy cannot be created or destroyed; it is transformed from one form into another. Be careful not to say that energy is “created” when talking about photosynthesis and respiration.You may also be expected to name examples of energy-requiring reactions in organisms:
The sodium-potassium pump that is found on many cell membranes is a great example of active transport. Three sodium ions are taken out of the cell while two potassium ions are taken in, both against their respective concentration gradients
The movement and contraction of muscles also requires substantial amounts of energy
Last updated:
You've read 0 of your 5 free revision notes this week
Sign up now. It’s free!
Did this page help you?